
一、无线通信技术概述
目前主流的无线传输技术可分为:高功耗、高速率的广域网传输技术(2G/3G/4G蜂窝通信技术、微波调制传输等);低功耗、低速率的广域网传输技术(Lora、Sigfox、NB-IoT等);高功耗、高速率的近距离传输技术(WIFI、蓝牙等);低功耗、低速率的近距离传输技术(ZigBee)。
在以无人区输电线路视频回传为主要业务需求的场景下,窄带和近距离传输的物联网无线技术并不适用该场景。目前主流的无线视频监控技术有WLAN(无线局域网)、模拟微波调制技术、4G/5G移动物联网技术、卫星通信技术。各技术的特性分析如下:
(1)WLAN(无线局域网)
WLAN(无线局域网)与一般传统的以太网(Ethernet)的概念并没有多大的差异,只是将以太网的线路传输部分(普通网卡--五类线--普通HUB)转变成无线传输形式(无线网卡--微波—AP,AP可理解为无线HUB),也可以说是双向通讯的数字微波通信。
(2)模拟微波调制技术
模拟微波调制技术是将视频信号直接调制在微波的通道上,通过天线发射出去,监控中心通过天线接收微波信号,再通过微波接收机解调出原来的视频信号。此种监控方式没有压缩损耗,几乎不会产生延时,因此可以保证视频质量,但其只适合点对点单路传输,不适合规模部署,此外因没有调制校准过程,抗干扰性差,在无线信号环境复杂的情况下几乎不可以使用。
(3)4G/5G移动物联网技术
利用运营商提供的4G/5G无线移动网络,可实现视频图像高质量地传输。
(4)卫星通信技术
依靠传统的通信卫星或高通量卫星技术,视频终端通过卫星传输通道实现点对点的通信。
各类无线视频监控技术的优缺点可归纳如下:
二、技术分析
为实现无人区输电线线路视频监控、在线监测等业务信息回传,可采用WLAN(无线局域网)、卫星通信技术等。
(一)WLAN(无线局域网)
目前,Mesh组网和WDS组网均能实现两个无线接入节点之间的无线链路通信,实现无线网络的扩展,可广泛应用于无线视频监控回传网络中,各组网特性分析如下:
(1)WDS组网
WDS组网通过无线网桥连接两个独立的局域网段。WDS组网结构包含点对点、点对多点。
目前无线网桥设备可实现点对点10km以上的远距离传输,实际数据吞吐量不低于200Mbps,整机功率小于20W。在整个组网中无线网桥根据节点作用的不同可实现不同的工作模式:在覆盖场景下支持AP(基站)工作模式、在接入场景下支持CPE(客户端)工作模式、在回传场景下支持WDS工作模式。
(2)Mesh组网
图1 典型Mesh组网架构
在Mesh网络中,如果某个节点的AP发生故障,它可以重新再选择一个AP进行通信,数据仍然可以高速地到达目的地,可以有效避免单点故障,所以Mesh网络比WDS网络更加稳定。
Mesh组网虽然便捷灵活,但整体链路带宽较低并且开销较大,在链路较长、跳接数量较多的情况下无法保障数据的正常传输。
(3)Mesh组网与WDS组网的对比
(二)卫星通信技术
国内卫星通信主要采用传统的Ku卫星和高通量通信卫星,其中高通量通信卫星主要是位于地球同步轨道的中星16号卫星、亚太6D卫星。目前中星16号卫星已实现商用,亚太6D卫星还处在在轨试运行阶段。“中星16号”卫星单站下载和回传速率最高可达150Mbps和12Mbps,单站整机功率约为40W左右。
由于卫星远端站最大回传速率较低、“南山效应”、功耗较高等问题制约了其在输电线路视频回传业务的广泛应用。但卫星远端站可作为无线回传网络上监测点零星补点的手段,也可结合Wi-Fi桥接技术,在输电线路或变电站巡检、应急救援时提供近程的通信覆盖,并且可配置COFDM图传设备将无人机自主巡检时视频画面通过卫星通道实现实时回传。
三、应用场景
按照某输电线路无网络覆盖的情况,可分为以下两种场景进行监控信号回传方案的设计:
场景一:整条输电线路无网络覆盖的区域零散、无网络覆盖区间范围较短。无网络覆盖区域可通过Mesh组网或WDS组网搭建的无线链路将业务信息汇聚至具备运营商信号的电力铁塔,通过4G CPE设备接入运营商电力无线专网APN通道回传至监控中心。
图2 场景一组网架构(示例)
场景二:输电线路无网络覆盖区域较广。无网络覆盖区域通过Mesh组网或WDS组网搭建的无线链路将业务信息直接回传至就近变电站(就近变电站是指据输电线路较近的变电站)。但其能够实现的网络覆盖距离会受制于设备的带宽、组网主链路跳接次数等,需根据实际的变电站两站之间的距离、需观察的点位数量等做进一步的业务模型分析。
图3 场景二组网架构(示例)
对于Mesh组网或WDS组网架构的选择需根据实际输电线路沿线观测点数量和点位位置进行部署,总体组网拓扑为主链路采用(汇聚节点间)多跳接力(桥接)的方式,汇聚节点采用点对多点实现近程覆盖。而因延时或受带宽限制使得采用上述两种组网架构的最优化情况下仍然存在无法回传的监测点位,可采用卫星通信技术作为补点的手段,从而实现输电线路无网络覆盖区域监测点位监控信息的回传。
四、无线传输拓扑图
图4 单链路多跳桥接传输拓扑图
在户外电力铁塔间无遮挡情况下,可通过网桥间多跳桥接方式构建传输链路,传输各种视频信号。最前端使用ST58T8G设备。中间铁塔使用ST5801GB-M3设备(三模设备),该设备可用其中两个模块分别接受前端信号和发送信号,第三个模块可用来做无线覆盖,当检修时,现场检修人员可通过无线设备和检修车辆间构建通信网络。车辆可通过无线设备与附近铁塔上的网络或卫星将前端工作人员采集的数据进行回传。
图5 点对多点桥接传输拓扑图
在户外电力铁塔间无遮挡情况下,前端的两个或多个铁塔可通过点对多点方式将采集的信息传输到一个铁塔上,然后再通过网桥间多跳桥接方式构建的传输链路将汇总的信息回传。最前端使用ST58T8G设备。中间铁塔使用ST5801GB-M3设备(三模设备),该设备可用其中两个模块分别接受前端信号和发送信号,第三个模块可用来做无线覆盖,当检修时,现场检修人员可通过无线设备和检修车辆间构建通信网络。车辆可通过无线设备与附近铁塔上的网络或卫星将前端工作人员采集的数据进行回传。
图6 桥接加mesh组网传输拓扑图
在户外电力铁塔间无遮挡情况下,可通过网桥间多跳桥接方式构建传输链路,传输各种视频信号。最前端使用ST58T8G设备。中间铁塔使用ST5801GB-M3设备(三模设备),该设备可用其中两个模块分别接受前端信号和发送信号,第三个模块可用来做无线覆盖,当检修时,现场检修人员可通过无线设备和检修车辆间构建通信网络。车辆可通过无线设备与附近铁塔上的网络或卫星将前端工作人员采集的数据进行回传。当其中三个或多个铁塔间均无遮挡时,可设置mesh组网,增强链路抗毁性,保证链路可靠性。
图7 多链路多跳桥接传输拓扑图
在户外电力铁塔间有遮挡情况下,部分无遮挡铁塔间可通过网桥间多跳桥接方式构建传输链路,传输各种视频信号,有遮挡的铁塔无法直接回传时,可根据现场情况选择附近其他铁塔进行回传。最前端使用ST58T8G设备。中间铁塔使用ST5801GB-M3设备(三模设备),该设备可用其中两个模块分别接受前端信号和发送信号,第三个模块可用来做无线覆盖,当检修时,现场检修人员可通过无线设备和检修车辆间构建通信网络。车辆可通过无线设备与附近铁塔上的网络或卫星将前端工作人员采集的数据进行回传。
自从苹果推出了AirTag,引发了UWB超宽带技术在市场上大火,很多男生表示再也不用担心漂亮女朋友“走丢”了;妈妈们表示,在小朋友的校服上缝上一枚,从此不用担心熊孩子们乱跑了;有了超宽带技术的加持,网友们表示自己丢三落四的祖传技能可能要退出 历史 舞台了。
而市场上,宝马、蔚来、大众在自家的新车上也纷纷推出了UWB智能钥匙,国内几家大型储存物流企业,近期也正在尝试落地,超宽带货物定位技术,小米OPPO等国内手机大厂,在去年也纷纷展示了,所谓的“一指连”空间感知技术。
是的,超宽带技术最近是异常的火热,受到了市场的追捧。超宽带技术也被很多数码博主描述成为蓝牙的替代者、物联网风口的引领者、甚至是新一代无线通讯技术的变革者。果真是如此吗?超宽带技术到底有什么神奇的地方,你真的了解什么是超宽带技术吗,它的技术特点是什么,优缺点又是什么,今天我们就来理性、客观且科学的分析超宽带这项技术的前景、发展空间以及趋势和定位。
一、UWB技术的发展历程
首先,超宽带技术并不是大家所以为的近几年发明的新技术,恰恰相反,超宽带技术其实是一项人类最早的无线通信方式,回溯超宽带技术的发展 历史 ,千年前中国人利用点燃长城上的峰火台对外族入侵的时间和位置,进行了烽火之间的信息传递。1880年,意大利人马可尼利用火花隙发射器,成功在大西洋上进行了人类第一次无线电传递。火花隙实际上就是一种带宽很宽的极窄脉冲,这也是人类真正现代意义上最早出现的超宽带技术。
当年英国最先进的泰坦尼克号撞到冰山后也是利用火花隙式发射机,发出了最后的无线呼救信号。最终让近千人,包括女主“肉丝”因此获救。上个世纪七十年代,超宽带技术多应用于军事用途,包括在军用雷达、军事定位上,军事通讯、军用成像等技术上面。比如军用保密通信上,采用多采跳频技术,实现了保密通信;比如在穿墙雷达上,使用超宽带的窄脉冲特性,实现了对恐怖分子的穿墙监控。这些都是超宽带技术的应用。1990年美国军方在一份DARPA的技术报告中首次提出了UWB这个名词,开始了超宽带技术的商业历程。
超宽带,顾名思义,了解通信知识的朋友都知道,一般的通信体制都会利用一个高频载波来调制一个窄带信号,通信信号的实际占用带宽并不高。而超宽带不同于传统的通信技术,使用的是最简单粗暴的纳秒级非正弦波的极窄脉冲来传输和接收信息和数据。从频域和时域的角度,传统的超宽带可以理解为是单纯的时域信号处理,不需要射频电路中的本振、差分等射频模块。我打个简单的比喻,4G、5G和Wifi信号就像是在念文言文,几个字就可以表达非常丰富的信息。而超宽带技术,则更像是原始部落的早期语言,需要很长一段话才能表达一个简单的意思,但是它也更直接,信息更明确。所以UWB、Wifi和5G本质上是两种完全不同的无线通信手段。
简单形容信息和我们说话是一样的,无非是三个维度,你是谁,你在哪里,你要干什么。这就是所谓的数据信息、身份信息,以及位置信息。在早期传递数据(干什么)方向上,超宽带技术其实也是有商业化实践的。早在2003年wifi技术还是一项比较新的技术时,美国WiQuest公司就一直在尝试,OFDM无线电架构下的高速UWB传输技术,在IEEE 802153a的标准下WiQuest的基带产品,当时已经实现了8到10米内、4百兆文件的传输。但是由于UWB接收器RF结构太过于复杂,加上芯片组的成本过高,市场落地一直没有推开。更致命的是,随着wifi联盟,在2006年80211n标准的正式亮相利用MIMO技术,实现了6百兆的数据传输,也间接宣告了高速UWB传输无线技术方案的失败。
二、UWB的技术特点
说完这三点优势,同时超宽带系统的劣势也很突出:
三、关于超宽带技术的一些展望
关于超宽带技术,我大概就介绍这么多。对于一项技术的基础了解,对于大家的投资,我觉得刚刚的介绍其实已经差不多了,也已经足够了。接下来我再来聊聊作为一名硬件工程师我对超宽带这项技术本身,一些个人更加主观的看法。
首先我的第一个观点,围绕手机来搭建生态绝对不是超宽带的未来,也很难有未来。由于需要以手机为极坐标,手机内部就需要配备两跟天线,而手机的内部空间其实是非常宝贵的。为了UWB的实现,成本和设计难度都要大大的提高。目前即使强如苹果依然需要蓝牙来做检测,理想的定位距离也只在30米内。实际上如果你把AirTag扔到附近没有iPhone的地方,它的定位就将失去作用。同时随着高通、华为海思的入局,UWB即使有发展,也会和蓝牙、Wifi一样集成到SoC中去,不会在手机上以外挂的形式出现。当然我并不觉得高通和海思现在有这样的计划去这么做,因为在C端,现阶段并没有这样的必要也没有这样的现实需求。
所以我的第二个观点就是,UWB超宽带技术目前依然还缺乏现象级的应用,来推动这项技术的真正爆发,目前超宽带技术的三大应用场景,安全门禁、物品定位以及设备互联。比如 汽车 钥匙、AR 游戏 、室内导航,无人机配送、智慧医疗、安全门禁,等等。我思考了一下,目前还没有一项真正的爆点应用来拉动大的需求。我个人认为仅仅在低成本的前提下,替代一些NFC的场景,可能有一丢丢的发展前景。
我的第三个观点,成本和生态,依然是超宽带技术目前很难逾越的鸿沟,现在市场上的超宽带产品绝大多数配的都是,Decawave的DW1000系列芯片,采用的还是早期的802154A协议,而像配备加密功能的4Z芯片方案,价格又高得离谱。我预测在C端,即使是手机厂商从现在开始统一思路,义无反顾的全力来推UWB搭建生态也需要3-5年。而B端,整套系统一个房间就需要3点定位,也就是3个基站的支持,多个房间就乘积的关系。我了解了一下,目前一个小型商场搭建成本在百万级以上。而是DW1000的芯片目前搭配的算法又很少,很考验企业自身的算法优化能力,所以目前企业端实际上也比较难推。
最后第四个观点,我大概了解了下市面上的量产产品,实际上理论和现实还是有差距的,目前市面上的UWB产品还仅能在小空间环境发挥,精准定位的明显优势,一到机场、户外、大房间等有障碍物的复杂场景,基本上和wifi都拉不开差距。
最后总结一下,UWB并不是一项前景已经稳定,标准已经统一并且没有局限性的产品,更不是很多数码博主认为的像发现新大陆一样的存在。恰恰相反,超宽带技术是一项优缺点极为鲜明,产品定位很清晰,并且正在发展,正在摸索,正在布局的一项早期产业。
如果一定要问我看不看好超宽带,那我可能就要泼冷水了,一切还是要看成本,成本只要下不来什么都是白搭。大家也不要太迷信苹果,只能说苹果目前有这个能力来摊销成本,可以作为奢侈品来炫技。但是单就这项技术本身,大家也不用太小看现在AI、NB-IoT,V2X以及下一代蓝牙协议的进展了。包括AR、VR方向上随着多传感器融合 SLAM的迭代,只要有算力,精准定位其实都不是什么,解决不了的痛点。而低功耗、万物互联则有NB-IoT,所以超宽带技术个人觉得还是很鸡肋的。4Z芯片系统的成本太高了,如果2-3年内,成本下可以下来,在B端还是有发展可能的,反之就不要玩了。
说的简单,直白一点的话就是4级和5级都有很大的宽带,但是5级比4级要大很多,我记得话响应的时间特别的短,基本上没有什么延迟,这次比4级巨大的优势,另外武器也有它的坐垫,目前的武器这个基站啊,它的这个半径比较小。
首先来说,作为第5代的移动通信技术,与之前所不同的是,如果说从3G到4G是线性的发展,那么从4G到5G就是指数级的飞越。
我们以华为19年所发布的5G CPE Pro(Balong5000芯片)为例来看的话,它的理论上传速度是1Gbps,下载速度是4Gbps,5G的整体速率达到了4G的50-100倍,我想大部分人都应该明白,量变引发质变这个道理。
那这么快的传输速度能带给我们什么呢?随着5G技术的全面展开,首先会被改变的就是云端存储技术,更快的速度与更短的时间,很可能会带动手机行业迎来巨大变革,届时我们的手机或许不在需要数据存储功能,无论是上传一张4K,还是观赏一部蓝光影片,都可以通过与云端的交互瞬间完成,这使我们的数据传输变得更便捷,更安全,即便手机丢失,也不用在担心重要的资料外泄,宝贵的遗失这种令人头疼的问题了。
小到手机计算机,大到物联网,无人驾驶技术与工业互联的制造产业,依托5G的传输速度,带来的是一个时代的变革
区别有三:
第一,5g相比4g最大区别是网络速度会比之前提高不少。4G网络最高的话,可以达到100兆每秒,5g可达到10GB每秒。下载一部高清的,运用新的5g网络的话只要1秒钟时间就可以。
第二,区别就是5g网络的延时小,大约在1ms,相比4G将延时缩短了30-50倍,所以通讯的实时性是很好的。(更能用于物联网技术,如自动驾驶等)
第三的一个就是载体不同,我们现在的手机使用的大多都是4G网络,是不支持5G的,所以要使用5G,肯定是要更换手机的。
5G比4G和传送速度要快,5G对各项各业数字化支持,5G网络平台服务,5G优秀的空口组合全面云化,5G的统一标准将实行行业跨界连接,提高全 社会 生产率,垂直行业将呈现市场细化、碎片化特征,支持不同行业丶用户丶销售商业模式的数字化变革,并最终行业支构和消费用户带来更多的收益和体验。5G的业务能力比4G更强更广泛。
非常有区别,最基本的通讯速率,使用的通信频段
4G是互联网。连接的人与人打交道。基于这样的设计。所以你可以看到直播。小视频。类似于这样的情况崛起。5G是物联网。所提出来的是万物互联。最典型的就是自动驾驶 汽车 。远程教育。远程医疗项目。等等。他比4G的优势在于更快速度。更低的延迟。和更好的体验。当然现在毕竟是前期投入成本过高。分摊到我们用户相应的会贵不少。这是必然的结果。想当年4G刚刚开始的时候。价格的贵的离谱。我记得我当时还吐槽说。只有土豪才用得起4G 大概这以后一两年费用就会慢慢降下来的。个人想法。希望对你有所帮助。谢谢
有最简单形容5G
就是快
简单来说,5G比4G的上传下载速度更快,时延更低。4G是民用级标准,5G是工业级标准。普通人使用手机,4G就够了;5G的应用场景是物联网,无人驾驶,远程手术等设备与设备之间的通信,这些场景都要求安全、可靠、几乎没有延时。
普通人使用费用来讲,大可以放心,5G自会让使用更流畅,费用不会比4G贵太多。比如4G会有最高消费限制,如果费用达到一定额度,就不再继续产生费用了,5G也会有一样的设定。运营商的其中一项考核指标就是提速降费。
1G:这是指第一代无线电话技术,即移动通信。它使用模拟信号,速度高达24kbps。那时的大哥大没有屏幕只能打电话
2G(GPRS):这是指第二代移动技术。使用数字电信标准。数据速率介于 56-114kbps。2G 实现了语音通信数字化,功能机有了小屏幕可以发短信了。
3G(WCDMA/CDMA 2000/TD-SCDMA): 指第三代移动电话技术。它提供 384kbps 的数据速率,因此可以轻松浏览网站和流式传输音乐。
而 4G 指的是第四代移动技术,被称为 LTE(长期演进)。比起1G-3G,它是这几种中最好的,与家中或办公室的 Wi-Fi 一样,稳定快速。
5G 是第 5 代移动通信技术,是 4G 系统后的延伸。美国时间 2018 年 6 月 13 日,圣地牙哥 3GPP 会议订下第一个国际 5G 标准。相比前者,5G 网络主要有三大特点,极高的速率 (eMBB)、极大的容量(mMTC)、极低的延时(URLLC)。我们就通过它的三大特定来讲讲与 4G 之间的不同。
5G VS 4G
高速度
我们都知道,通信依赖托电磁波,而电磁波的频率资源很有限,频率不同,速度也就不同。频率资源就像车厢,越高的频率,车厢越多,相同时间内能装载的信息就越多。所以频率越大,带宽也就更大,速度就越快。
目前我们 4G 使用的都是低频段,它的优点在于性能好,覆盖面广,能够有效减少运营商在基站的投入,节省资金。但缺点就是,用的人多,数据传输的“路”就会出现拥窄现象。尽管已经对现有的技术进行过优化,但速率的提供依旧有限。而 5G 使用的就是高频段,使用高频不但能缓解低频资源的紧张,由于没有拥窄现象,使得“道路”更加宽广,提高带宽的速率。但受限于高频的传播性能,传输所以很多的高频段频率资源没有被使用,正是5G可以好好利用的资源。
但是如何解决高频通信的传播问题呢?
这就需要依靠大规模天线(massive MIMO)了,MIMO就是“多进多出”(Multiple-Input Multiple-Output),多根天线发送,多根天线接收。容我找个示意图(大概是这样子的):
高频资源的频率很高,波长就很短,在天线设计时就可以做到天线阵子和他们之间的距离很小,就可以在很小的范围内集成天线阵列。天线阵子数量的增加可以带来额外的增益,结合波束赋形,波束追踪技术以弥补高频通信在传播上的受限。
在这些特性下,5G 提供高达 10Gbps 的峰值数据下载速率。4G 的峰值速率大概为 100Mbps,速度提升 100 倍。 理想情况下,用户能在几秒内下载 1 G 大小的高清视频。4K 视频需要最低 25Mbps 的下载速度,4G 达不到这个要求。所以,在 5G 环境下 4K 视频直播成为可能。另外,VR/AR 对带宽的需求是巨大的,5G为 VR 等虚拟化实现成为可能。就像文中的第一张图一样,2G 可以看苍老师的小说,3G 可以看苍老师的,4G 可以看苍老师的视频,而 5G 则是可以在 VR 中与苍老师进行互动。
大容量
高频段毫米波能够提升传输速率,但高频信号很难穿过固体。随着传输距离的增加,传输速率会相比 4G 的低频段下降的更快。为保证高效稳定的传输速率,需要更多基站,以便稳定的信号传输效果。 5G 技术引入了体积小,耗能低的微基站,这种基站可以安装部署在城市的任何位置,可以安装到路灯、信号灯、商场、住房等等。每个基站可以从其它基站接收信号并向任何位置的用户发送数据。信号接收均匀,承载量大,形成泛在网,解决高频段长距离传输差的缺点。
这也让物联网成为一种可能。在 5G 网络中,除了智能手机、PC 等常见 3C 产品。更多的终端设备也可以纳入到网络中,如可以通过网络控制的智能家具产品,如智能插座、智能空调、智能冰箱以及智能穿戴设备等等。而在物联网领域中,不同的应用场景。网络的需求不尽相同。一些终端设备需要大量实时数据快速处理反馈,而一些终端设备只需要少量数据或几个 bit 的数据传输。它对传输的速度反应要求都不高,甚至可能一两月才更新少量的数据。比如水表、电表类的使用量信息显示。所以在 5G 网络中,需要能自动识别出设备终端对网络的需求,分别使用不同的网络带宽。当少量数据传输时, 5G 智能识别使用耗能较小的窄带网络对数据的传输,从而有效减少能源的消耗和使用,保证终端设备的低耗长时运作的使用性。实现真正的万物互联。
低延时
相比 4G 来说,5G 在现有的技术架构上进行了很大的优化和调整。为实现超低延时,5G 从接入网、承载网、核心网、骨干网各个方面一起着手进行。
在大幅度降低空口传输延时的同时,尽可能减少转发节点,缩短节点之间的距离。引入网络切片技术,把物理上的网络切片,划分为 N 张逻辑网络以适应不同应用场景。 将核心网控制功能下沉,部署到接入网边缘,趋近用户,缩减传输距离,减少延时。
4G 网络应用服务器集中于中心机房,距离终端远,中间需要经过多个传输节点。5G 通过边缘计算技术将接入网与互联网业务进行深度融合,在接入网边缘部署计算、处理和存储功能的云计算设备,构建移动便捷云,提供信息技术服务环境和云计算能力。可以减少数据传输过程中的转发和处理时间,降低端到端的延时。
低延时让无人驾驶成为可能。一辆 汽车 在 60Km/h 的速度下。50ms 的刹车紧急制动的距离为 1m,10ms 为 17 cm, 1ms 为 17mm。 在 4G 网络延迟大概为 50ms。50ms 的时间大概制动距离为 1m。这可能就是生死间的差距,而 5G 网络低至 1ms 的延迟,让自动驾驶在马路上保障行驶安全成为可能。大家都知道重庆万州公交坠江时间,如果当时公交车使用的是 5G 技术,搭载智能监控和智能系统管理,当发现车辆偏离正常轨迹,要冲出桥堤的时候,紧急制定系统通过低延时特性,1ms 中刹住,可能就不会造成悲剧的发生了。
4G 实现数据速率大幅提升,进入了移动宽带时代,成就了互联网,改变了人们的生活方式。无论是点餐、外卖、支付等都被移动端改变,白领日常订餐、周末睡个懒觉,饿了吗、美团等,手机 App 上一健点餐、快速配送上门、网上支付快捷又便宜,生活被外卖改变,外出都变少了;网上购物的便利,去实体店、超市都变少了,直接网购搞定。再到直播服务斗鱼,熊猫平台的兴起,以及短视频快手,抖音的大热,也同样改变我们的 娱乐 方式。
4G 改变生活,而 5G 将会改变整个 社会 。从 VR/AR 等虚拟物品、虚拟人物、增强情景信息等方式给人们全新的媒体体验。它还将进入物联网时代,并渗透进至各行各业。车联网、智能制造、全球物流跟踪系统、智能农业、市政抄表等。当 5G 到来之时,亦是 社会 颠覆之际。从而走向数字化,信息化的智能世界。
回答这个问题之前呢,首先明确下概念
4G是指第四代移动通信系统,5G是第五代移动通信系统 。5G是4G技术的延伸,是4G技术的升级版。这个G是Generation,是代际的意思,不要理解为流量多少G的那个G
至于4G和5G的区别主要是三部分,分别对应5G三大应用场景
高速率,就一个字,快。4G下载速率100 Mbps,而5G下载速率理论值将达到10 Gbps,是4G的100倍 。在实际应用过程中,理想的情况下,用户可以在几秒内下载一部1G左右的。在未来,5G高速率可以让VR这些虚拟现实技术成为可能。
5G的高速率对应的应用场景是eMBB(增强移动带宽)
我们平时使用手机玩 游戏 或者打开网页时,出现掉线、转圈圈的情况,这便是网络延迟严重所导致。 4G的网络时延是50ms(005s),而5G的理论网络时延是1ms(0001s),是4G的50倍,可以说基本达到实时的水平 。这就意味着我们可以在很短时间内加载完整个网页。在未来,5G的低时延特性可以让无人驾驶、远程医疗成为可能。
5G的低时延对应的应用场景是uRLLC(高可靠低延时通信)
5G网络还有大容量低功耗的特点,可以接入千亿级的设备容量 。除了智能手机,还有更多的智能终端也能接入网络中。可以通过网络控制的智能家具产品,如智能插座、智能空调、智能冰箱以及智能穿戴设备等等,满足物联网通信的需求。
5G大容量对应的应用场景是mMTC (海量机器类通信)
当然了,4G和5G还有其他的区别,但是包含太多专业术语。对于我们这些普通大众来说,主要记住这三种区别就差不多了
以上就是小黄为您总结的4G和5G的区别
如果您有什么想法或建议,欢迎下方留言评论。
WiFi技术:
WiFi方案的优势是技术成熟,单独的产品就可以接入公网,成本也是相对较低。
缺点则是WiFi设备一般功耗较大,在物联网领域中,供电是一个问题;
WiFi接入数量相对有限,一个家庭路由器一般只能接入几十个设备;
当然,WiFi方案在物联网初级阶段有较大优势,单独的WiFi模块依托路由器即可入网,优势明显,虽然接入数量不多,但是在物联网、智能家居未大规模普及的情况下,也可以满足大多数需求。
所以基于IoT UART串口WiFi模块WG219/WG229/WG231/LCS6260的WiFi方案更适用于对功耗要求不明显,不会大量部署的物联网产品,例如:智能电饭煲,智能空调、冰箱、洗衣机等传统家电设备接入物联网。
蓝牙技术:
蓝牙方案的主要优势在于蓝牙模块的超低功耗,而且通过app打开蓝牙与手机的交互比较简单。
目前随着蓝牙50模块SKB501、以及更多蓝牙50产品的上市,蓝牙技术的数据传输速度和覆盖范围等得到了巨大的提升,更加适用于物联网的要求。
所以,蓝牙方案适用于对功耗有要求,和手机可以直接交互的物联网产品,例如:智能门锁,智能秤,智能电动牙刷等,也适用于大规模蓝牙mesh灯控、蓝牙传感器网络的部署。
UWB技术:
超宽带技术是近年来新兴一项全新的、与传统通信技术有极大差异的通信无线新技术。它不需要使用传统通信体制中的载波,而是通过发送和接收具有纳秒或微秒级以下的极窄脉冲来传输数据,从而具有31~106GHz量级的带宽。目前,包括美国,日本,加拿大等在内的国家都在研究这项技术,在无线室内定位领域具有良好的前景。
UWB技术是一种传输速率高,发射功率较低,穿透能力较强并且是基于极窄脉冲的无线技术,无载波。正是这些优点,使它在室内定位领域得到了较为精确的结果。
超宽带室内定位技术常采用TDOA演示测距定位算法,就是通过信号到达的时间差,通过双曲线交叉来定位的超宽带系统包括产生、发射、接收、处理极窄脉冲信号的无线电系统。而超宽带室内定位系统则包括UWB接收器、UWB参考标签和主动UWB标签。定位过程中由UWB接收器接收标签发射的UWB信号,通过过滤电磁波传输过程中夹杂的各种噪声干扰,得到含有效信息的信号,再通过中央处理单元进行测距定位计算分析。
超宽带可用于室内精确定位,例如战场士兵的位置发现、机器人运动跟踪等。超宽带系统与传统的窄带系统相比,具有穿透力强、功耗低、抗干扰效果好、安全性高、系统复杂度低、能提供精确定位精度等优点。因此,超宽带技术可以应用于室内静止或者移动物体以及人的定位跟踪与导航,且能提供十分精确的定位精度。根据不同公司使用的技术手段或算法不同,精度可保持在01 m~05 m。
光学薄膜技术是一门交叉性很强的学科,它涉及到光电技术、真空技术、材料科学、精密机械制造、计算机技术、自动控制技术等领域。光学薄膜是一类重要的光学元件,它广泛地应用于现代光学光电子学、光学工程以及其他相关的科 学技术领域。它不仅能改善系统性能(如减反、滤波),而且是满足设计目标的必要手段。光学薄膜可分光透射,分光反射,分光吸收以及改变光的偏振状态或相位,用作各种反射膜,增透膜和干涉滤光片,它们赋予光学元件各种使用性能,对光学仪器的质量起着重要或决定性的作用。
科学家曾经预言21世纪是光子世纪。21世纪初光电子技术迅速发展,光学薄膜器件的应用向着性能要求和技术难度更高、应用范围和知识领域更广、器件种类和需求数量更多的方向迅猛发展。光学薄膜技术的发展对促进和推动科学技术现代化和仪器微型化起着十分重要的作用,光学薄膜在各个新兴科学技术中都得到了广泛的应用。
一、光学薄膜的制造技术
光学薄膜可以采用物理气相沉积(PVD)、化学气相沉积(CVD)和化学液相沉积(CLD)三种技术来制备。
1、物理气相沉积(PVD)
PVD需要使用真空镀膜机,制造成本高,但膜层厚度可以精确控制,膜层强度好,目前已被广泛采用。在PVD法中,根据膜料气化方式的不同,又分为热蒸发、溅射、离子镀及离子辅助镀技术。其中,光学薄膜主要采用热蒸发及离子辅助镀技术制造,溅射及离子镀技术用于光学薄膜制造的工艺是近几年才开始的。
11热蒸发
光学薄膜器件主要采用真空环境下的热蒸发方法制造,此方法简单、经济、 *** 作方便。尽管光学薄膜制备技术得到长足发展,但是真空热蒸发依然是最主要的沉积手段,当然热蒸发技术本身也随着科学技术的发展与时俱进。 在真空室中,加热蒸发容器中待形成膜的原材料,使其原子或分子从表面气化逸出,形成蒸汽流,入射到固体(称为衬底或基片)表面,凝结形成固态薄膜的方法。
热蒸发的三种基本过程:由凝聚相转变为气相的相变过程;气化原子或分子在蒸发源与基片之间的运输,即这些粒子在环境气氛中的飞行过程;蒸发原子或分子在基片表面的沉积过程。
12溅射
溅射指用高速正离子轰击膜料表面,通过动量传递,使其分子或原子获得足
够的动能而从靶表面逸出(溅射),在被镀件表面凝聚成膜。
与蒸发镀膜相比,其优点是:膜层在基片上的附着力强,膜层纯度高,可同时溅射不同成分的合金膜或化合物;缺点是:需制备专用膜料靶,靶利用率低。
溅射的方式有三种:二级溅射、三级/四级溅射、射频溅射。
13离子镀
离子镀兼有热蒸发的高成膜速率和溅射高能离子轰击获得致密膜层的双优效果,离子镀膜层附着力强、致密。离子镀常见类型:蒸发源和离化方式。
特点:
a、膜附着力强。这是由注入和溅射所致。
b、绕镀性好。原理上,电力线所到之处皆可镀上膜层,有利于面形复杂零件膜层的镀制。
c、膜层致密。溅射破坏了膜层柱状结构的形成。
d、成膜速率高。与热蒸发的成膜速率相当。
e、可在任何材料的工作上镀膜。绝缘体可施加高频电场。
14粒子辅助镀
在热蒸发镀膜技术中增设离子发生器—离子源,产生离子束,在热蒸发进行的同时,用离子束轰击正在生长的膜层,形成致密均匀结构(聚集密度接近于1),使膜层的稳定性提高,达到改善膜层光学和机械性能。
离子辅助镀技术与离子镀技术相比,薄膜的光学性能更佳,膜层的吸收减少,波长漂移极小,牢固度好,该技术适合室温基底和二氧化锆、二氧化钛等高熔点氧化物薄膜的镀制,也适合变密度薄膜、优质分光镜和高性能滤光片的镀制。
2、化学气相沉积(CVD)
化学气相沉积就是利用气态先驱反应物,通过原子、分子间化学反应的途径来生成固态薄膜的技术。
CVD一般需要较高的沉积温度,而且在薄膜制备前需要特定的先驱反应物,在薄膜制备过程中也会产生可燃、有毒等一些副产物。但CVD技术制备薄膜的沉积速率一般较高。
3、化学液相沉积(CLD)
CLD工艺简单,制造成本低,但膜层厚度不能精确控制,膜层强度差,较难获得多层膜,还存在废水废气造成的污染问题,已很少使用。
二、光学薄膜的种类
用光学功能薄膜制成的种类繁多的光学薄膜器件,已成为光学系统、光学仪器中不可缺少的重要部件。其应用已从传统的光学仪器发展到天文物理、航天、激光、电工、通信、材料、建筑、生物医学、红外物理、农业等诸多技术领域。
分为 : 基本光学薄膜、控光薄膜、光学薄膜材料
1、基本光学薄膜
基本光学薄膜是指能够实现分光透射、分光反射、分光吸收和改变光的偏振状态或相位,可用于各种反射膜、增透膜和干涉滤波片的薄膜,它赋予光学元件各种使用性能,对保证光学仪器的质量起到决定性的作。
11减反膜(增透膜)
减反膜是用来减少光学元件表面反射损失的一种功能薄膜。它可以有单层和多层膜系构成。单层膜能使某一波长的反射率为零,多层膜在某一波段具有实际为零的反射率。在应用中,由于条件和应用对象不同,其所用的减反膜的类型与诸多因素有关,例如基片材料、波长领域、所需特征及成本等。
a、单层减反膜
为减少光的反射消耗,增大光线的透射率,常在玻璃的表面上沉积一层减反膜。其原理是光的干涉现象。只要膜的折射率小于玻璃基片的折射率,就能都实现光的减反射作用。
b、多层减反膜
多层减反膜主要是为了改进单层减反膜的不足,进一步提高减反膜的效果,因而采用增加膜层层数的措施。
12反射膜
反射膜的作用与减反膜相反,它是要求把大部分或几乎是全部入射光反射回去。如光学仪器、激光器、波导管、 汽车 、灯具的反射镜,都需要沉积镀制反射薄膜。反射膜有金属膜和介质膜两种
a、金属反射膜
金属反射膜具有很高的反射率和一定的吸收能力。金属高反射膜仅用于对膜的吸收损耗没有特殊要求的场合。
b、介质反射膜
金属高反射膜的吸收损失较大,在某些应用中,如多光束干涉仪、高质量激光器的反射膜,就要求沉积低吸收、高反射的全介质高反射膜。
2、控光薄膜
控光薄膜分为阳光控制膜、低辐射率膜、光学性能可变换膜三种 。
21、阳光控制膜
在玻璃上镀上一层光学薄膜,使玻璃对太阳光中的可见光部分有较高的透射率,而对太阳光中的红外部分有较高的反射率,并对太阳光中的紫外线部分有很高的吸收率。将它制成阳光镀膜幕墙玻璃,就能保证白天建筑物内有足够的亮度等等
22、低辐射率膜
在玻璃的表面镀制一层低辐射系数的薄膜,称为低辐射率膜,俗称隔热膜,它对红外线有较高的反射率。
23、光学性能可变换膜
光学性能可变换膜是指物质在外界环境影响下产生一种对光反应的改变,在一定外界条件(热、光、电)下,使它改变颜色并能复原,这种变色膜是一类有广阔应用前景的光学功能材料。
3、光学薄膜材料
31、金属和合金
金属和合金是较为广泛的薄膜,具有反射率高、截止带宽、中性好、偏振效应小以及吸收可以改变等特点,在一些特殊用途的膜系中,它们有特别重要的作用。
32、化合物(电介质)
化合物是有重要用途并广泛应用的光学薄膜,主要有:卤化物、氧化物、硫化物和硒化物。
33、半导体
半导体材料在近红外和远红外区透明,是一类重要的光学薄膜材料。在光学薄膜中使用最普遍的半导体材料是硅和锗。
三、光学薄膜研究的趋势
综合国内外光学及光学薄膜的研究现状,光学薄膜的研究呈现以下几个发展趋势:
1、继续重视对传统光学仪器中光学薄膜应用的研究和开发,提高薄膜的光学质量,研究大面积镀膜技术及其应用;
2、开发与新型精密光学仪器及光电子器件要求相适应的光学薄膜及其材料的制备方法,以满足现代光学、空间技术、 军事技术和全光网络技术日益迫切的需要;
3、开发极端光谱条件下的光学薄膜,如超窄带密集型波分复用滤波片,软X射线膜,高功率激光膜等的制备技术;
4、开发与环境保护息息相关的“绿色光学薄膜”,实现光能与人类 健康 需要的相互协调;
5、研究光学薄膜的材料物理、成膜过程的原位观察,实现镀膜过程的自动控制和超快速低温镀膜。
时至今日,光学薄膜已获得很大的发展,光学薄膜的生产已逐步走向系列化、 程序化和专业化,但是,在光学薄膜的研究中还有不少问题有待进一步解决, 光学薄膜现有的水平还需要进一步提高。科学家曾预言21世纪是光子世纪,而光学薄膜作为传输光子并实现其各种功能的重要载体,必然会在光学、光电子学及光子学获得突破性发展的同时,得到进一步的繁荣和发展。
登录>智能座舱芯片解决方案A7862、国内首颗车规级双频定位芯片A2395、旗舰级智能手表平台W517 可以与5G NR网络共存并接入5G核心网。V8811让NB-IoT终端产品从传统的静态应用向动态应用升级,进而将最终将低功耗窄带物联网产品带入5G新纪元。
据了解,此次NB-IoT芯片具备的低功耗、广覆盖、低成本、大容量等优势,使其可以广泛应用于多种垂直行业,如远程抄表、智能停车、智慧农业等。
除此之外,作为国内首个发布5G射频前端完整解决方案的企业,紫光展锐推出的5G射频前端可提供整个射频前端所需的有源芯片,从客户参考设计开始,到器件选型、匹配调试和量产跟踪,整体交付周期比业界平均水平缩短20%,大大缩短了客户产品开发时间,简化了开发工作。。型号是VN007+,注意,是初代VN007的升级版,相比初代VN007,VN007+增加了N1等频段支持,理论上来说,固件也相比会更加稳定,毕竟初代算是个试验品,据群里使用的小伙伴反映,也确实稳定标签也写着是VN007+,买新不买旧嘛,自从VN007+出了之后,旧款VN007在海鲜市场价格又跳水了。这里可能有疑问,新旧款区别,新款相比旧款,多了几个频段,以及截止目前官方依旧有固件更新支持,所以建议新款,稳定维护中。两侧很干净,背面就是接口多了,依次为电源开关、DC电源接口、SIM卡槽、Type-C接口,还有个小小的重置按键~以下4个千兆网口~都是LAN口,不过目前新款固件是支持WAN功能了,可以插卡或拨号上网,双线备份,不过拨号性能不强,只适用于百兆左右,毕竟不是正儿八经为宽带拨号而生的路由器,没有对应芯片加持的原因。首先测试5G SA模式的速度~发现跑不满300速率,因为我这张卡速率只有300兆~没上5G套餐,4G套餐下使用5G,最高能到300Mbps速度。
感觉是基站位置问题,找了个靠近基站的位置,果然,速度跑到310多兆了,稳~
据群友发的图看,可以跑到800多兆,千兆的不知道行不行,实在没极速卡测试~所以500兆速率可以随意上车~
下面是5G NSA的测速,和SA差不多,不过肯定是优先使用SA了,延迟更低,打游戏很稳~
下面是4G测速,跑到了70多兆,还行吧,支持4G载波聚合,所以挺快的,比一般4G路由器强不少。
对了,我还在交流群中联系到了厂家技术大佬,获取到了VN007+的高级账号密码,有了高级账号,你可以进行锁频、锁小区、锁PCI之类的 *** 作,如下图~可以发现VN007+支持的频段还是挺多的哦~
比如,可以锁4G的频段,在信号差的情况下,锁定某一频段可以带来网速的提升~
总之,相比4G路由器,非常超值,再也不卡啦~
不完美的地方
1,发热有点大,应该是这类CPE都会有的问题,中兴华为的也有,因为它是被动散热的,底部摸起来烫,可以加个风扇,也可以拆机加装内置风扇~
2,不能针对某设备进行限速。
3,5G断流问题应该是CPE的常见问题,但我没遇到过,可能体验时间短,应该是可以通过固件更新来改善的~
因为它没有外接的天线接口,只能使用它内置的天线,如果你的信号比较差,就不用考虑这款,等下放窗外,分分钟不见~中兴和华为的都有独立的天线接口,不过我这两格的SA信号,300速率的卡跑到250左右,所以还行~没有WIFI 6,这不废话吗,这价格要啥自行车呢,所以这个不算缺点,但也说下啦~搜网速度不够快~,LED指示灯容易坏,通病,许多人遇到,但厂家售后不错,发回去帮搞好了,点赞,非常负责。最后总的来说,这价格对得起,小毛病也有,但基本稳定使用还是没有问题的(它的基础功能)
无线通信发展经历了一百多年的历史,在这过程中,产生了不少新的技术的同时,又在不断地与其他技术进行综合,从而不断地涌现出一系列的通信方式,在适应不断提高的社会需求同时,自身也得到完善和发展。
从无线电通信发展全过程来看,不难看出,无线通信大致可分为3个重要发展阶段:20年代~30年代的短波通信,50年代~70年代的微波接力通信(含卫星通信),80年代~现在的移动通信。
现仅就当今发展最为迅速,系统最为复杂,而又是热门话题的移动通信技术的发展趋势进行叙述。
截止20xx年7月,全世界的移动用户数量已经突破50亿户,预计今年该数字将突破60亿。
移动通信之所以得到快速发展主要是其不受任何时间、地点限制地实现了对象之间的通信。
从设备组网的角度看,移动通信网络可以看成是有线通信网的延伸,它由无线和有线两部分组成。
无线部分提供移动用户终端的接入,其包括数据交换、用户管理、漫游、鉴权等大部分网络功能的实现还是通过固定网络来实现的。
1移动通信发展史
70年代中期至80年代中期。
这是移动通信蓬勃发展时期。
1978年底,美国贝尔试验室研制成功移动电话系统(AMPS),建成了蜂窝状移动通信网。
根据移动通信的发展史,其发展历程和发展方向,可以划分为3个阶段:
1)第一代——模拟蜂窝通信系统
70年代末至80年代中期是移动通信技术得到了较快发展。
1978年底,美国贝尔试验室研制成功高级移动电话系统(AMPS)并建成了蜂窝状移动通信网,也即是第一代移动电话网,采用的是蜂窝组网技术。
美国第一个蜂窝系统AMPS(高级移动电话业务)在1979年成为现实。
因为传输技术条件的等的限制,第一代可移动电话用户不能实现长途漫游,也就是说移动电话用户只能在一定区域范围内实现移动通信,除此之外,该系统还存在着诸如系统容量不足、系统间互不兼容、通信质量不好、保密性不强、不能提供数据传送业务等致命的弱点,因此,第一代模拟蜂窝移动通信最终被第二代的数字蜂窝移动通信所替代。
但在该组网技术仍在下一代系统中得以应用。
2)第二代——数字蜂窝移动通信系统
为了克服第一代模拟蜂窝通信系统的各种缺点,20世纪80年代中期到21世纪初,数字蜂窝移动通信系统得到了大规模的应用,其代表技术是欧洲的GSM和美国的CDMA,也就是通常所说的2G(即第二代数字蜂窝移动通信系统)。
第二代数字蜂窝移动通信系统主要采用的是时分多址技术TDMA(TimeDivisionMultipleAccess)或者是窄带码分多址CDMA(CodeDivisionMultipleAccess)技术。
TDMA系列最有代表的是泛欧GSM、美国D-AMPS和日本PDC;窄带码分多址(N-CDMA)系列主要是以高通公司为首研制的基于IS-95的N-CDMA(窄带CDMA),是目前广泛应用的技术,它的应用技术标准叫做IS-95,是美国在1993年发布的N-CDMA标准,现在已成为常用的国际标准。
2移动通信的特点
移动通信是基于终端用户处于移动状态的通信方式。
它具有如下有别于有线通信的特点:
1)由于用户位置的不确定性,它跟通信中的基站必须使用无线电波来传输信息。
由于电波是沿直线传播的,受移动台不断移动、障碍物遮挡、地形和地物的影响会使电波多径传播而造成多径衰落和阴影效应等影响,严重干扰了移动通信的质量。
2)移动通信是在强干扰的环境下工作的,主要干扰包括互调干扰,邻道干扰和同频干扰等;
3)通信容量有限。
频率作为一种资源必须合理安排和分配,为缓和用户数量大和资源有限的矛盾,除开发新频段之外,还采取了有效利用频率的各种措施,加压缩频带、缩小波道间隔、多波道共享等,即采用频谱和无线频道有效利用技术;
4)通信系统比固定网复杂得多。
因为用户随时移动位置等原因,通信系统需要具备根据信号的强弱来进行通信信道的切换、频率和功率控制、地址登记、越区切换及漫游存取等跟踪技术。
这就使得移动通信系统的信令的设计要比固定网要复杂得多。
在入网和计费方式上也有特殊的要求;
5)对移动台的要求高。
移动台长期处于不固定位置,外界的影响很难预料,这要求移动台具有很强的适应能力。
此外,还要求性能稳定可靠、携带方便、小型、低功耗及能耐高、低温等。
同时,要尽量使用户 *** 作方便,适应新业务、新技术的发展,以满足不同人群的使用。
这给移动台的设计和制造带来很大的困难。
3移动通信的发展趋势
技术的创新从本质上来说就是为了不断满足人们日益增长的需求。
在过去的几十年中,移动通信无论是技术上还是业务上都得到了长足的'发展,这些变化也正极大地改变着人们的生活和工作方式。
随着全球一体化进程的加速和人们生活水平的不断提高,如物联网等新技术的发展等等,人们对未来移动通信技术将提出更多更高的需求。
尽管数字蜂窝移动通信技术也在不断的得到完善,但随着用户数量和网络规模的不断扩大,可以预见的是,在这快速增长的市场需求下,频率资源已经成为瓶颈,通话质量不尽人意,传输速率不高,达不到真正意义上满足移动多媒体和物联网的需求。
综上所述,我们大致可以预见未来的移动通信技术将沿着以下几个大的方向改善:1)随着网络业务数据化、分组化程度的提高,移动互联网逐步形成;
2)为了解决频率枯竭的问题,移动通信将应用于更高的频段,频率利用率也将得到很大程度的提高;
3)随着人们个性化需求的不断提高,提供个性化服务将成为业务发展的一个趋势,为此,网络设备的智能化和小型化也将成为必然;
4)在目前信息通信技术大融合的背景下,移动网和固定网、移动网和互联网的融合已成必然,网络和业务的融合将成为趋势,移动互联网的普及也将成必然;
5)随着全球化进程的进一步提高,视频移动业务将越来越普及,高速率、高质量和低费用是下一步市场对移动业务提出的更高要求。
目前世界上大多还在沿用着第二代数字蜂窝移动通信技术,第三代移动通信技术(3G)也在逐步推广当中,但源于更多的需求,人们早已提出了第四代移动通信技术(4G)的设想。
4G标准比要比上一代具有更强的功能。
31第三代数字移动通信系统
第三代移动数字通信系统(3G)是在第二代的基础上进一步演变的以宽带CDMA技术为主移动通信技术,能同时提供语音数据综合服务和移动多媒体服务的移动通信系统,是一代有能力彻底解决第一、二代移动通信系统主要弊端的先进的移动通信系统。
为了在移动通信领域适应高速数据和图像电信业务的发展,并企望在第三代系统中统一标准,国际电联(ITU)进行了多方面努力。
于2000年5月确定W-CDMA、CDMA2000和TD-SCDMA三大3G标准,并写入3G技术指导性文件《2000年国际移动电信计划》(简称IMT-2000),2007年10月19日,在国际电信联盟在日内瓦举行的无线通信全体会议上,经过多数国家投票通过,WiMAX正式被批准成为继WCDMA、CDMA2000和TD-SCDMA之后的第四个全球3G标准[2]。
与前两代移动通信相比,第三代数字移动通信是一种能够覆盖全球的多媒体移动通信。
它具有别于上两代移动通信的两个主要特点是:
1)可实现全球漫游,使任意时间、任意地点、任意人之间的交流成为可能。
也就是说,每个用户都有一个个人通信号码,无论该用户走到世界任何一个国家,人们都可以找到你,而反过来,你走到世界任何一个地方,都可以很方便地与国内用户或他国用户通信,与在国内通信时毫无分别;
2)能够实现高速数据传输和宽带多媒体服务。
也就是说,用第三代手机除了可以进行普通的寻呼和通话外,还可以上网读报纸,查信息、下载文件和;由于带宽的提高,第三代移动通信系统还可以传输图像,提供可视电话业务。
从这两年的情况来看,随着终端手机设备的智能化发展,使得3G业务越来越多的在人们的生活中体现,如WAP业务,多媒体消息业务,定位服务业务,OTA下载业务等新兴业务得到了长足的发展。
中国3G牌照已经花落三家,分别是:TD—SCDMA中国移动(中国技术)、WCDMA中国联通(欧洲技术)、CDMA2000中国电信(美国技术)。
随着运营商竞争压力的加剧,可以预见的是我们消费者将享受到更好的新兴3G业务服务和更多的资费优惠。
32第四代移动通信技术
尽管历经多年的研究开发,第三代移动通信在实际应用中还是碰到了很多问题,因此人们又开始把希望寄托到了提前出现的第四代的研究。
到目前为止,第四代移动通信技术(4G)技术还只是较多地停留于概念性的设想上,人们可以称之为广带(Broadband)接入和分布网络,也可无线互联网技术或后3G技术,在4G的定义上,人们还无法就其技术参数、国际标准、网络结构、乃至业务内容给出一个标准。
但其大致的轮廓已经得到了业界的共识。
展望未来,我们可以大致看到4G通信将具有如下的特征:
1)信息传输速率更快
人们研究4G的初衷是为了解决移动终端快速访问互联网的问题,变为现实的4G在应用上应具备更快的无线通信速度。
从目前已经公布的数据来看,4G最大的数据传输速率超过100Mbps,而3G网络只有2Mbps。
2)网络频谱更宽
要想提高信息的传输速度,4G网络中所需要带宽要比3G网络高出许多,估计达每个信道的带宽会达100MHz,是3G20倍。
3)容量更大
据估计,10年后,人们每天所获取的信息量要比今天至少高3-4个数量级,而3G的容量将远无法满足这种增长的业务量需求,所以,在4G里将采用新的网络技术来极大地提高系统的容量,如SDMA(空分多址)技术等,来满足未来大信息量的需求。
4)兼容性强
要使4G通信尽快地被人们接受,4G应考虑在投资最少的情况下轻易地过渡到。
因此4G将采用大区域覆盖、多种网络相互兼容、终端及网络升级过渡容易等特点。
实现真正意义的全球漫游。
5)智能性更高
4G系统的智能化程度更高。
在网络系统功能方面,能够做到自适应地进行资源分配、处理变化的业务流和适应不同的信道环境;在其用户终端的设计和 *** 作也将更具智能化,它已经不是传统意义上的手机,它可以被当成手提电视,能够综合各方面因素来提醒它的主人此刻该做什么或者不该做什么。
它将能够实现许多现在人们无法想象的功能。
6)能实现更高质量的多媒体通信
4G通信将能在很大程度上改善现有3G多媒体通信存在的品质不良,数据传输速率不高的不足,为各种多媒体流的高速高质量传送提供可行的解决方案。
7)通信资费更加便宜
由于兼容性问题的解决和平滑性过渡的实现,4G的通信部署相比其他技术将显得容易和迅速得多。
这样就能够有效地降低运营成本,竞争的白日化将让人们享受到更加便宜通信资费。
对于现在的人来说,未来的4G通信的确显得很神秘,但技术的发展将使4G通信变成现实。
实现3G未能实现的功能,实现真正意义上的个人通信。
4结论
随着信息时代的到来,人们越来越依靠移动通信带来的便利。
可以设想不需要多少年,我们将会迎来一个真正的综合性的、宽带域、多功能、可以随时随地满足人们多角度、全方位需求的通信方式。
参考文献
[1]王文博移动通信原理与应用[M]北京邮电大学出版社,2004
[2]常永宏第三代移动通信系统与技术[M]北京:人民邮电出版社,2004
[3]谢显忠,等基于TDD的第四代移动通信技术[M]电子工业出版社,2005
5G时代的商机和个体创业机会都基于一个新字,5G时代就是一个大创新的时代,也是一个大改变大发展的崭新时代,5G时代:未来,已来!5G的未来是多彩的,5G的能力也是不断积累的。业务需求和技术驱动是5G发展的两个“风火轮”,缺一不可。与前几代无线通信技术不同,5G带来的变化是全社会的,例如大视频,未来还有虚拟现实;例如自动驾驶,从辅助驾驶未来进一步走向无人驾驶,行驶主导权从人到汽车。从阶段发展的角度看,5G面临五大挑战:
1、目标的差异化。
全球5G发展不平衡,诉求也不一致。例如美国做5G固定宽带接入,相当于抛开3GPP自定义一种5G标准,产业链依托特殊场景形成;欧洲 4G 发展没有中国、亚太蓬勃,5G时代更多关注URLLC场景;中国则是定义为国家战略,5G三大场景齐头并进。日本和韩国则有大型赛事的驱动,开始阶段EMBB是主要诉求。这将带来对技术、频谱不同的诉求。
2、网络的复杂化
5G并不是单独的网络存在,而是和前面2G、3G、4G网络共存,本身还有EMBB、URLLC、mMTC三大场景业务,网络复杂程度是指数级的增加,对产业链所有厂商来说都是巨大挑战。
3、技术的妥协化
5G面临如此复杂的场景,考虑前后项的兼容,在标准制定时存在一些妥协,同时也是产业伙伴共同协作的结果。
4、场景的演进化
应用场景在2020年后,随着技术的革命,不一定局限于当前的思维,甚至会带来技术和标准演进的不确定性。
5、应用的滞后化
网络依赖业务应用的驱动,但这些业务蓝图属于未来业务,目前还没有真正实现,初期相辅相成,会存在一定结合滞后性和全面推广的时延性。
面临五大挑战,我们要步步为营,博学笃用,运势谋篇,明道优术,合众践行,一周一微步,一月一小步,一年一大步,循序渐进,日积月累,通过创新发展去有效应对:、技术创新、架构创新、应用创新、模式创新、产业创新。很期待5G时代,很期待融入5G生活!
欢迎分享,转载请注明来源:内存溢出
微信扫一扫
支付宝扫一扫
评论列表(0条)