
若L和Q是常数,是不能求解的
若L和Q是某个变量z的函数,可以两边对这个变量求导得出
t(L(z))L'(z)=Q'(z)
可用代换L(z)=x解出t(x)的表达式
等式两端同时求导,左端为变动上限积分求导,书上都有公式,在推导微积分基本定理那节。
∫[1,x] f(t)dt = xf(x)+x^2 -->
f(x) = f(x)+xf'(x)+ 2x -->
f'(x) = -2
f(x)= -2x + C , f(1)= -1 -->
C=1
f(x) = 1-2x
将 x=1 带入:∫[1,x] f(t)dt = xf(x)+x^2 即可得:f(1)=-1;
本题条件:f(1)=-1 多余,本题也用不到方程
众所周知,微积分的两大部分是微分与积分。一元函数情况下,求微分实际上是求一个已知函数的导数,而积分是已知一个函数的导数,求原函数。所以,微分与积分互为逆运算。
分划的参数趋于零时的极限,叫做这个函数在这个闭区间上的定积分。
不定积分(Indefinite integral)
即已知导数求原函数。若F′(x)=f(x),那么[F(x)+C]′=f(x)(C∈R)也就是说,把f(x)积分,不一定能得到F(x),因为F(x)+C的导数也是f(x)(C是任意常数)。所以f(x)积分的结果有无数个,是不确定的。我们一律用F(x)+C代替,这就称为不定积分。即如果一个导数有原函数,那么它就有无限多个原函数。
定积分 (definite integral)
定积分就是求函数f(X)在区间[a,b]中图线下包围的面积。即由 y=0,x=a,x=b,y=f(X)所围成图形的面积。这个图形称为曲边梯形,特例是曲边三角形。
定积分
2定义
设函数f(x) 在区间[a,b]上连续,将区间[a,b]分成n个子区间[a,x0],(x0,x1],(x1,x2],…,(xi,b],可知各区间的长度依次是:△x1=X0-a,△x2=X1-x0,…,△xi=b-xi在每个子区间(xi-1,xi)任取一点ξi(i=1,2,…,n),作和式(见右下图),设λ=max{△x1,△x2,…,△xi}(即λ属于最大的区间长度),则当λ→0时,该和式无限接近于某个常数,这个常数叫做函数f(x) 在区间[a,b]的定积分,记为(见右下图):
其中:a叫做积分下限,b叫做积分上限,区间[a,b]叫做积分区间,函数f(x) 叫做被积函数,x 叫做积分变量,f(x)dx 叫做被积表达式,∫ 叫做积分号。
之所以称其为定积
定积分
分,是因为它积分后得出的值是确定的,是一个数, 而不是一个函数。
3黎曼积分
定积分的正式名称是黎曼积分。用黎曼自己的话来说,就是把直角坐标系上的函数的图象用平行于y轴的直线把其分割成无数个矩形,然后把某个区间[a,b]上的矩形累加起来,所得到的就是这个函数的图象在区间[a,b]的面积。实际上,定积分的上下限就是区间的两个端点a,b
我们可以看到,定积分的本质是把图象无限细分,再累加起来,而积分的本质是求一个函数的原函数。它们看起来没有任何的联系,那么为什么定积分要写成积分的形式呢?
4分点问题
定积分是把函数在某个区间上的图象[a,b]分成n份,用平行于y轴的直线把其分割成无数个矩形,再求当n→+∞时所有这些矩形面积的和。习惯上,我们用等差级数分点,即相邻两端点的间距Δx是相等的。但是必须指出,即使Δx不相等,积分值仍然相同。我们假设这些“矩形面积和”S=f(x1)Δx1+f(x2)Δx2+……f[x(n-1)]Δx(n-1),那么当n→+∞时,Δx的最大值趋于0,所以所有的Δx趋于0,所以S仍然趋于积分值
利用这个规律,在我们了解牛顿-莱布尼兹公式之前,我们便可以对某些函数进行积分。例如我们可以证明对于函数f(x)=x^k(k∈Q,k≠-1),有f(x)dx=(b^(k+1)-a^(k+1))/(k+1)。
我们选择等比级数来分点,令公比q=n^√(b/a),则b/a=q^n,b=aq^n。令分点x0=a,x1=aq,x2=aq^2……xn=aq^n=b,因为f(xj)=xj^k=a^kq^jk,且Δxj=x(j+1)-xj=aq^(j+1)-aq^j 那么“矩形面积和”
Sn=a^k(aq-a)+a^kq^k(aq^2-aq)+a^kq^2k(aq^3-aq^2)+……+a^kq^(n-1)k[aq^n-aq^(n-1)]
提出a^k(aq-a),则
Sn=a^(k+1)(q-1)[1+q^(k+1)+q^2(k+1)+……q^(n-1)(k+1)]
利用等比级数公式,得到
Sn=(q-1)/(q^(k+1)-1)(b^(k+1)-a^(k+1))=(b^(k+1)-a^(k+1))/N
其中N=(q^(k+1)-1)/(q-1),设k=u/v(u,v∈Z),令q^(1/v)=s,则
N=(s^(k+1)v-1)/(s^v-1)=(s^u+v-1)/(s^v-1)=((s^(u+v)-1)/(s-1))/((s^v-1)/(s-1))
令n增加,则s,q都趋于1,因而N的极限为(u+v)/v=u/v+1=k+1
5性质
①:常数可以提到积分号前。
性质
②:代数和的积分等于积分的代数和。
③:定积分的可加性:如果积分区间[a,b]被c分为两个
子区间[a,c]与(c,b]则有(见右图)
④Risch 算法
⑤如果在区间[a,b]上,f(x)≥0,则f(x)dx≥0
6常用算法
换元法
(1)f(x)∈C([a,b]);
(2)x=ψ(t)在[α,β]上单值、可导;
(3)当α≤t≤β时,a≤ψ(t)≤b,且ψ(α)=a,ψ(β)=b,
则f(x)dx=f(ψ(t))ψ′(t)dt
分部积分法
设u=u(x),v=(x)均在区间[a,b]上可导,且u′,v′∈R([a,b]),则有分部积分公式
uv′dx= uvvu′dx
7基本定理
定积分与不定积分看起来风马牛不相及,但是由于一个数学上重要的理论的支撑,使得它们有了本质的密切关系。把一个图形无限细分再累加,这似乎是不可能的事情,但是由于这个理论,可以转化为计算积分。这个重要理论就是大名鼎鼎的牛顿-莱布尼兹公式,它的内容是:
如果f(x)是[a,b]上的连续函数,并且有F′(x)=f(x),那么 f(x)dx=F(b)-F(a)
用文字表述为:一个定积分式的值,就是上限在原函数的值与下限在原函数的值的差。
正因为这个理论,揭示了积分与黎曼积分本质的联系,可见其在微积分学以至更高等的数学上的重要地位,因此,牛顿-莱布尼兹公式也被称作微积分基本定理。
8应用
1,解决求曲边图形的面积问题
例:求由抛物线y^2=4x与直线y=2x-4围成的平
定积分的应用(4张)
面图形D的面积S
2,求变速直线运动的路程
做变速直线运动的物体经过的路程s,等于其速度函数v=v(t) (v(t)≥0)在时间区间[a,b]上的定积分。
3,变力做功
某物体在变力F=F(x)的作用下,在位移区间[a,b]上做的功等于F=F(x)在[a,b]上的定积分。(见图册“应用”)
9定理
定理1:设f(x)在区间[a,b]上连续,则f(x)在[a,b]上可积。
定理2:设f(x)在区间[a,b]上有界,且只有有限个间断点,则f(x)在[a,b]上可积。
定理3:设f(x)在区间[a,b]上单调,则f(x)在[a,b]上可积。
解:
由已知,令f(x)=xe^(-x) +2k
k=∫[0:1][te^(-t)+2k]dt
=[-(1+t)e^(-t)+2kt]|[0:1]
=[-(1+1)·e⁻¹+2k·1]-[-(1+0)·e⁰+2k·0]
=-2·e⁻¹+2k+1
k=(2-e)/e
函数f(x)的解析式为:f(x)=xe^(-x) +2(2-e)/e
不好意思,告诉你答案是在害您,为了您的学业成绩,我只能告诉您知识点
从整个学科上来看,高数实际上是围绕着极限、导数和积分这三种基本的运算展开的。对于每一种运算,我们首先要掌握它们主要的计算方法;熟练掌握计算方法后,再思考利用这种运算我们还可以解决哪些问题,比如会计算极限以后:那么我们就能解决函数的连续性,函数间断点的分类,导数的定义这些问题。这样一梳理,整个高数的逻辑体系就会比较清晰。
极限部分:
极限的计算方法很多,总结起来有十多种,这里我们只列出主要的:四则运算,等价无穷小替换,洛必达法则,重要极限,泰勒公式,中值定理,夹逼定理,单调有界收敛定理。每种方法具体的形式教材上都有详细的讲述,考生可以自己回顾一下,不太清晰的地方再翻到对应的章节看一看。
会计算极限之后,我们来说说直接通过极限定义的基本概念:
通过极限,我们定义了函数的连续性:函数在处连续的定义是,根据极限的定义,我们知道该定义又等价于。所以讨论函数的连续性就是计算极限。然后是间断点的分类,具体标准如下:
从中我们也可以看出,讨论函数间断点的分类,也仅需要计算左右极限。
再往后就是导数的定义了,函数在处可导的定义是极限存在,也可以写成极限存在。这里的极限式与前面相比要复杂一点,但本质上是一样的。最后还有可微的定义,函数在处可微的定义是存在只与有关而与 无关的常数使得时,有,其中。直接利用其定义,我们可以证明函数在一点可导和可微是等价的,它们都强于函数在该点连续。
以上就是极限这个体系下主要的知识点。
导数部分:
导数可以通过其定义计算,比如对分段函数在分段点上的导数。但更多的时候,我们是直接通过各种求导法则来计算的。主要的求导法则有下面这些:四则运算,复合函数求导法则,反函数求导法则,变上限积分求导。其中变上限积分求导公式本质上应该是积分学的内容,但出题的时候一般是和导数这一块的知识点一起出的,所以我们就把它归到求导法则里面了。能熟练运用这些基本的求导法则之后,我们还需要掌握几种特殊形式的函数导数的计算:隐函数求导,参数方程求导。我们对导数的要求是不能有不会算的导数。这一部分的题目往往不难,但计算量比较大,需要考生有较高的熟练度。
然后是导数的应用。导数主要有如下几个方面的应用:切线,单调性,极值,拐点。每一部分都有一系列相关的定理,考生自行回顾一下。这中间导数与单调性的关系是核心的考点,考试在考查这一块时主要有三种考法:①求单调区间或证明单调性;②证明不等式;③讨论方程根的个数。同时,导数与单调性的关系还是理解极值与拐点部分相关定理的基础。另外,数学三的考生还需要注意导数的经济学应用;数学一和数学二的考生还要掌握曲率的计算公式。
积分部分:
一元函数积分学首先可以分成不定积分和定积分,其中不定积分是计算定积分的基础。对于不定积分,我们主要掌握它的计算方法:第一类换元法,第二类换元法,分部积分法。这三种方法要融会贯通,掌握各种常见形式函数的积分方法。熟练掌握不定积分的计算技巧之后再来看一看定积分。定积分的定义考生需要稍微注意一下,考试对定积分的定义的要求其实就是两个方面:会用定积分的定义计算一些简单的极限;理解微元法(分割、近似、求和、取极限)。至于可积性的严格定义,考生没有必要掌握。然后是定积分这一块相关的定理和性质,这中间我们就提醒考生注意两个定理:积分中值定理和微积分基本定理。这两个定理的条件要记清楚,证明过程也要掌握,考试都直接或间接地考过。至于定积分的计算,我们主要的方法是利用牛顿—莱布尼兹公式借助不定积分进行计算,当然还可以利用一些定积分的特殊性质(如对称区间上的积分)。一般来说,只要不定积分的计算没问题,定积分的计算也就不成问题。定积分之后还有个广义积分,它实际上就是把积分过程和求极限的过程结合起来了。考试对这一部分的要求不太高,只要掌握常见的广义积分收敛性的判别,再会进行一些简单的计算就可以了。
会计算积分了,再来看一看定积分的应用。定积分的应用分为几何应用和物理应用。其中几何应用包括平面图形面积的计算,简单的几何体(主要是旋转体)体积的计算,曲线弧长的计算,旋转曲面面积的计算。物理应用主要是一些常见物理量的计算,包括功,压力,质心,引力,转动惯量等。其中数学一和数学二的考生需要全部掌握;数学三的考生只需掌握平面图形面积的计算,简单的几何体(主要是旋转体)体积的计算。这一部分题目的综合性往往比较强,对考生综合能力要求较高。
这就是高等数学整个学科从三种基本运算的角度梳理出来的主要知识点。除此之外,考生需要掌握的知识点还有多元函数微积分,它实际上是将一元函数中的极限,连续,可导,可微,积分等概念推广到了多元函数的情况,考生可以按照上面一样的思路来总结。另外还有两章:级数、微分方程。它们可以看做是对前面知识点综合的应用。比如微分方程,它实际上就是积分学的推广,解微分方程就是求积分。而级数则是对极限,导数和积分各种知识的综合应用。
欢迎分享,转载请注明来源:内存溢出
微信扫一扫
支付宝扫一扫
评论列表(0条)