
desh文件:
#ifndef CRYPTOPP_DES_H
#define CRYPTOPP_DES_H
#include "cryptlibh"
#include "misch"
NAMESPACE_BEGIN(CryptoPP)
class DES : public BlockTransformation
{
public:
DES(const byte userKey, CipherDir);
void ProcessBlock(const byte inBlock, byte outBlock) const;
void ProcessBlock(byte inoutBlock) const
{DES::ProcessBlock(inoutBlock, inoutBlock);}
enum {KEYLENGTH=8, BLOCKSIZE=8};
unsigned int BlockSize() const {return BLOCKSIZE;}
protected:
static const word32 Spbox[8][64];
SecBlock<word32> k;
};
class DESEncryption : public DES
{
public:
DESEncryption(const byte userKey)
: DES (userKey, ENCRYPTION) {}
};
class DESDecryption : public DES
{
public:
DESDecryption(const byte userKey)
: DES (userKey, DECRYPTION) {}
};
class DES_EDE_Encryption : public BlockTransformation
{
public:
DES_EDE_Encryption(const byte userKey)
: e(userKey, ENCRYPTION), d(userKey + DES::KEYLENGTH, DECRYPTION) {}
void ProcessBlock(const byte inBlock, byte outBlock) const;
void ProcessBlock(byte inoutBlock) const;
enum {KEYLENGTH=16, BLOCKSIZE=8};
unsigned int BlockSize() const {return BLOCKSIZE;}
private:
DES e, d;
};
class DES_EDE_Decryption : public BlockTransformation
{
public:
DES_EDE_Decryption(const byte userKey)
: d(userKey, DECRYPTION), e(userKey + DES::KEYLENGTH, ENCRYPTION) {}
void ProcessBlock(const byte inBlock, byte outBlock) const;
void ProcessBlock(byte inoutBlock) const;
enum {KEYLENGTH=16, BLOCKSIZE=8};
unsigned int BlockSize() const {return BLOCKSIZE;}
private:
DES d, e;
};
class TripleDES_Encryption : public BlockTransformation
{
public:
TripleDES_Encryption(const byte userKey)
: e1(userKey, ENCRYPTION), d(userKey + DES::KEYLENGTH, DECRYPTION),
e2(userKey + 2DES::KEYLENGTH, ENCRYPTION) {}
void ProcessBlock(const byte inBlock, byte outBlock) const;
void ProcessBlock(byte inoutBlock) const;
enum {KEYLENGTH=24, BLOCKSIZE=8};
unsigned int BlockSize() const {return BLOCKSIZE;}
private:
DES e1, d, e2;
};
class TripleDES_Decryption : public BlockTransformation
{
public:
TripleDES_Decryption(const byte userKey)
: d1(userKey + 2DES::KEYLENGTH, DECRYPTION), e(userKey + DES::KEYLENGTH, ENCRYPTION),
d2(userKey, DECRYPTION) {}
void ProcessBlock(const byte inBlock, byte outBlock) const;
void ProcessBlock(byte inoutBlock) const;
enum {KEYLENGTH=24, BLOCKSIZE=8};
unsigned int BlockSize() const {return BLOCKSIZE;}
private:
DES d1, e, d2;
};
NAMESPACE_END
#endif
descpp文件:
// descpp - modified by Wei Dai from:
/
This is a major rewrite of my old public domain DES code written
circa 1987, which in turn borrowed heavily from Jim Gillogly's 1977
public domain code I pretty much kept my key scheduling code, but
the actual encrypt/decrypt routines are taken from from Richard
Outerbridge's DES code as printed in Schneier's "Applied Cryptography"
This code is in the public domain I would appreciate bug reports and
enhancements
Phil Karn KA9Q, karn@unixka9qamprorg, August 1994
/
#include "pchh"
#include "misch"
#include "desh"
NAMESPACE_BEGIN(CryptoPP)
/ Tables defined in the Data Encryption Standard documents
Three of these tables, the initial permutation, the final
permutation and the expansion operator, are regular enough that
for speed, we hard-code them They're here for reference only
Also, the S and P boxes are used by a separate program, genspc,
to build the combined SP box, Spbox[] They're also here just
for reference
/
#ifdef notdef
/ initial permutation IP /
static byte ip[] = {
58, 50, 42, 34, 26, 18, 10, 2,
60, 52, 44, 36, 28, 20, 12, 4,
62, 54, 46, 38, 30, 22, 14, 6,
64, 56, 48, 40, 32, 24, 16, 8,
57, 49, 41, 33, 25, 17, 9, 1,
59, 51, 43, 35, 27, 19, 11, 3,
61, 53, 45, 37, 29, 21, 13, 5,
63, 55, 47, 39, 31, 23, 15, 7
};
/ final permutation IP^-1 /
static byte fp[] = {
40, 8, 48, 16, 56, 24, 64, 32,
39, 7, 47, 15, 55, 23, 63, 31,
38, 6, 46, 14, 54, 22, 62, 30,
37, 5, 45, 13, 53, 21, 61, 29,
36, 4, 44, 12, 52, 20, 60, 28,
35, 3, 43, 11, 51, 19, 59, 27,
34, 2, 42, 10, 50, 18, 58, 26,
33, 1, 41, 9, 49, 17, 57, 25
};
/ expansion operation matrix /
static byte ei[] = {
32, 1, 2, 3, 4, 5,
4, 5, 6, 7, 8, 9,
8, 9, 10, 11, 12, 13,
12, 13, 14, 15, 16, 17,
16, 17, 18, 19, 20, 21,
20, 21, 22, 23, 24, 25,
24, 25, 26, 27, 28, 29,
28, 29, 30, 31, 32, 1
};
/ The (in)famous S-boxes /
static byte sbox[8][64] = {
/ S1 /
14, 4, 13, 1, 2, 15, 11, 8, 3, 10, 6, 12, 5, 9, 0, 7,
0, 15, 7, 4, 14, 2, 13, 1, 10, 6, 12, 11, 9, 5, 3, 8,
4, 1, 14, 8, 13, 6, 2, 11, 15, 12, 9, 7, 3, 10, 5, 0,
15, 12, 8, 2, 4, 9, 1, 7, 5, 11, 3, 14, 10, 0, 6, 13,
/ S2 /
15, 1, 8, 14, 6, 11, 3, 4, 9, 7, 2, 13, 12, 0, 5, 10,
3, 13, 4, 7, 15, 2, 8, 14, 12, 0, 1, 10, 6, 9, 11, 5,
0, 14, 7, 11, 10, 4, 13, 1, 5, 8, 12, 6, 9, 3, 2, 15,
13, 8, 10, 1, 3, 15, 4, 2, 11, 6, 7, 12, 0, 5, 14, 9,
/ S3 /
10, 0, 9, 14, 6, 3, 15, 5, 1, 13, 12, 7, 11, 4, 2, 8,
13, 7, 0, 9, 3, 4, 6, 10, 2, 8, 5, 14, 12, 11, 15, 1,
13, 6, 4, 9, 8, 15, 3, 0, 11, 1, 2, 12, 5, 10, 14, 7,
1, 10, 13, 0, 6, 9, 8, 7, 4, 15, 14, 3, 11, 5, 2, 12,
/ S4 /
7, 13, 14, 3, 0, 6, 9, 10, 1, 2, 8, 5, 11, 12, 4, 15,
13, 8, 11, 5, 6, 15, 0, 3, 4, 7, 2, 12, 1, 10, 14, 9,
10, 6, 9, 0, 12, 11, 7, 13, 15, 1, 3, 14, 5, 2, 8, 4,
3, 15, 0, 6, 10, 1, 13, 8, 9, 4, 5, 11, 12, 7, 2, 14,
/ S5 /
2, 12, 4, 1, 7, 10, 11, 6, 8, 5, 3, 15, 13, 0, 14, 9,
14, 11, 2, 12, 4, 7, 13, 1, 5, 0, 15, 10, 3, 9, 8, 6,
4, 2, 1, 11, 10, 13, 7, 8, 15, 9, 12, 5, 6, 3, 0, 14,
11, 8, 12, 7, 1, 14, 2, 13, 6, 15, 0, 9, 10, 4, 5, 3,
/ S6 /
12, 1, 10, 15, 9, 2, 6, 8, 0, 13, 3, 4, 14, 7, 5, 11,
10, 15, 4, 2, 7, 12, 9, 5, 6, 1, 13, 14, 0, 11, 3, 8,
9, 14, 15, 5, 2, 8, 12, 3, 7, 0, 4, 10, 1, 13, 11, 6,
4, 3, 2, 12, 9, 5, 15, 10, 11, 14, 1, 7, 6, 0, 8, 13,
/ S7 /
4, 11, 2, 14, 15, 0, 8, 13, 3, 12, 9, 7, 5, 10, 6, 1,
13, 0, 11, 7, 4, 9, 1, 10, 14, 3, 5, 12, 2, 15, 8, 6,
1, 4, 11, 13, 12, 3, 7, 14, 10, 15, 6, 8, 0, 5, 9, 2,
6, 11, 13, 8, 1, 4, 10, 7, 9, 5, 0, 15, 14, 2, 3, 12,
/ S8 /
13, 2, 8, 4, 6, 15, 11, 1, 10, 9, 3, 14, 5, 0, 12, 7,
1, 15, 13, 8, 10, 3, 7, 4, 12, 5, 6, 11, 0, 14, 9, 2,
7, 11, 4, 1, 9, 12, 14, 2, 0, 6, 10, 13, 15, 3, 5, 8,
2, 1, 14, 7, 4, 10, 8, 13, 15, 12, 9, 0, 3, 5, 6, 11
};
/ 32-bit permutation function P used on the output of the S-boxes /
static byte p32i[] = {
16, 7, 20, 21,
29, 12, 28, 17,
1, 15, 23, 26,
5, 18, 31, 10,
2, 8, 24, 14,
32, 27, 3, 9,
19, 13, 30, 6,
22, 11, 4, 25
};
#endif
/ permuted choice table (key) /
static const byte pc1[] = {
57, 49, 41, 33, 25, 17, 9,
1, 58, 50, 42, 34, 26, 18,
10, 2, 59, 51, 43, 35, 27,
19, 11, 3, 60, 52, 44, 36,
63, 55, 47, 39, 31, 23, 15,
7, 62, 54, 46, 38, 30, 22,
14, 6, 61, 53, 45, 37, 29,
21, 13, 5, 28, 20, 12, 4
};
/ number left rotations of pc1 /
static const byte totrot[] = {
1,2,4,6,8,10,12,14,15,17,19,21,23,25,27,28
};
/ permuted choice key (table) /
static const byte pc2[] = {
14, 17, 11, 24, 1, 5,
3, 28, 15, 6, 21, 10,
23, 19, 12, 4, 26, 8,
16, 7, 27, 20, 13, 2,
41, 52, 31, 37, 47, 55,
30, 40, 51, 45, 33, 48,
44, 49, 39, 56, 34, 53,
46, 42, 50, 36, 29, 32
};
/ End of DES-defined tables /
/ bit 0 is left-most in byte /
static const int bytebit[] = {
0200,0100,040,020,010,04,02,01
};
/ Set key (initialize key schedule array) /
DES::DES(const byte key, CipherDir dir)
: k(32)
{
SecByteBlock buffer(56+56+8);
byte const pc1m=buffer; / place to modify pc1 into /
byte const pcr=pc1m+56; / place to rotate pc1 into /
byte const ks=pcr+56;
register int i,j,l;
int m;
for (j=0; j<56; j++) { / convert pc1 to bits of key /
l=pc1[j]-1; / integer bit location /
m = l & 07; / find bit /
pc1m[j]=(key[l>>3] & / find which key byte l is in /
bytebit[m]) / and which bit of that byte /
1 : 0; / and store 1-bit result /
}
for (i=0; i<16; i++) { / key chunk for each iteration /
memset(ks,0,8); / Clear key schedule /
for (j=0; j<56; j++) / rotate pc1 the right amount /
pcr[j] = pc1m[(l=j+totrot[i])<(j<28 28 : 56) l: l-28];
/ rotate left and right halves independently /
for (j=0; j<48; j++){ / select bits individually /
/ check bit that goes to ks[j] /
if (pcr[pc2[j]-1]){
/ mask it in if it's there /
l= j % 6;
ks[j/6] |= bytebit[l] >> 2;
}
}
/ Now convert to odd/even interleaved form for use in F /
k[2i] = ((word32)ks[0] << 24)
| ((word32)ks[2] << 16)
| ((word32)ks[4] << 8)
| ((word32)ks[6]);
k[2i+1] = ((word32)ks[1] << 24)
| ((word32)ks[3] << 16)
| ((word32)ks[5] << 8)
| ((word32)ks[7]);
}
if (dir==DECRYPTION) // reverse key schedule order
for (i=0; i<16; i+=2)
{
std::swap(k[i], k[32-2-i]);
std::swap(k[i+1], k[32-1-i]);
}
}
/ End of C code common to both versions /
/ C code only in portable version /
// Richard Outerbridge's initial permutation algorithm
/
inline void IPERM(word32 &left, word32 &right)
{
word32 work;
work = ((left >> 4) ^ right) & 0x0f0f0f0f;
right ^= work;
left ^= work << 4;
work = ((left >> 16) ^ right) & 0xffff;
right ^= work;
left ^= work << 16;
work = ((right >> 2) ^ left) & 0x33333333;
left ^= work;
right ^= (work << 2);
work = ((right >> 8) ^ left) & 0xff00ff;
left ^= work;
right ^= (work << 8);
right = rotl(right, 1);
work = (left ^ right) & 0xaaaaaaaa;
left ^= work;
right ^= work;
left = rotl(left, 1);
}
inline void FPERM(word32 &left, word32 &right)
{
word32 work;
right = rotr(right, 1);
work = (left ^ right) & 0xaaaaaaaa;
left ^= work;
right ^= work;
left = rotr(left, 1);
work = ((left >> 8) ^ right) & 0xff00ff;
right ^= work;
left ^= work << 8;
work = ((left >> 2) ^ right) & 0x33333333;
right ^= work;
left ^= work << 2;
work = ((right >> 16) ^ left) & 0xffff;
left ^= work;
right ^= work << 16;
work = ((right >> 4) ^ left) & 0x0f0f0f0f;
left ^= work;
right ^= work << 4;
}
/
// Wei Dai's modification to Richard Outerbridge's initial permutation
// algorithm, this one is faster if you have access to rotate instructions
// (like in MSVC)
inline void IPERM(word32 &left, word32 &right)
{
word32 work;
right = rotl(right, 4U);
work = (left ^ right) & 0xf0f0f0f0;
left ^= work;
right = rotr(right^work, 20U);
work = (left ^ right) & 0xffff0000;
left ^= work;
right = rotr(right^work, 18U);
work = (left ^ right) & 0x33333333;
left ^= work;
right = rotr(right^work, 6U);
work = (left ^ right) & 0x00ff00ff;
left ^= work;
right = rotl(right^work, 9U);
work = (left ^ right) & 0xaaaaaaaa;
left = rotl(left^work, 1U);
right ^= work;
}
inline void FPERM(word32 &left, word32 &right)
{
word32 work;
right = rotr(right, 1U);
work = (left ^ right) & 0xaaaaaaaa;
right ^= work;
left = rotr(left^work, 9U);
work = (left ^ right) & 0x00ff00ff;
right ^= work;
left = rotl(left^work, 6U);
work = (left ^ right) & 0x33333333;
right ^= work;
left = rotl(left^work, 18U);
work = (left ^ right) & 0xffff0000;
right ^= work;
left = rotl(left^work, 20U);
work = (left ^ right) & 0xf0f0f0f0;
right ^= work;
left = rotr(left^work, 4U);
}
// Encrypt or decrypt a block of data in ECB mode
void DES::ProcessBlock(const byte inBlock, byte outBlock) const
{
word32 l,r,work;
#ifdef IS_LITTLE_ENDIAN
l = byteReverse((word32 )inBlock);
r = byteReverse((word32 )(inBlock+4));
#else
l = (word32 )inBlock;
r = (word32 )(inBlock+4);
#endif
IPERM(l,r);
const word32 kptr=k;
for (unsigned i=0; i<8; i++)
{
work = rotr(r, 4U) ^ kptr[4i+0];
l ^= Spbox[6][(work) & 0x3f]
^ Spbox[4][(work >> 8) & 0x3f]
^ Spbox[2][(work >> 16) & 0x3f]
^ Spbox[0][(work >> 24) & 0x3f];
work = r ^ kptr[4i+1];
l ^= Spbox[7][(work) & 0x3f]
^ Spbox[5][(work >> 8) & 0x3f]
^ Spbox[3][(work >> 16) & 0x3f]
^ Spbox[1][(work >> 24) & 0x3f];
work = rotr(l, 4U) ^ kptr[4i+2];
r ^= Spbox[6][(work) & 0x3f]
^ Spbox[4][(work >> 8) & 0x3f]
^ Spbox[2][(work >> 16) & 0x3f]
^ Spbox[0][(work >> 24) & 0x3f];
work = l ^ kptr[4i+3];
r ^= Spbox[7][(work) & 0x3f]
^ Spbox[5][(work >> 8) & 0x3f]
^ Spbox[3][(work >> 16) & 0x3f]
^ Spbox[1][(work >> 24) & 0x3f];
}
FPERM(l,r);
#ifdef IS_LITTLE_ENDIAN
(word32 )outBlock = byteReverse(r);
(word32 )(outBlock+4) = byteReverse(l);
#else
(word32 )outBlock = r;
(word32 )(outBlock+4) = l;
#endif
}
void DES_EDE_Encryption::ProcessBlock(byte inoutBlock) const
{
eProcessBlock(inoutBlock);
dProcessBlock(inoutBlock);
eProcessBlock(inoutBlock);
}
void DES_EDE_Encryption::ProcessBlock(const byte inBlock, byte outBlock) const
{
eProcessBlock(inBlock, outBlock);
dProcessBlock(outBlock);
eProcessBlock(outBlock);
}
void DES_EDE_Decryption::ProcessBlock(byte inoutBlock) const
{
dProcessBlock(inoutBlock);
eProcessBlock(inoutBlock);
dProcessBlock(inoutBlock);
}
void DES_EDE_Decryption::ProcessBlock(const byte inBlock, byte outBlock) const
{
dProcessBlock(inBlock, outBlock);
eProcessBlock(outBlock);
dProcessBlock(outBlock);
}
void TripleDES_Encryption::ProcessBlock(byte inoutBlock) const
{
e1ProcessBlock(inoutBlock);
dProcessBlock(inoutBlock);
e2ProcessBlock(inoutBlock);
}
void TripleDES_Encryption::ProcessBlock(const byte inBlock, byte outBlock) const
{
e1ProcessBlock(inBlock, outBlock);
dProcessBlock(outBlock);
e2ProcessBlock(outBlock);
}
void TripleDES_Decryption::ProcessBlock(byte inoutBlock) const
{
d1ProcessBlock(inoutBlock);
eProcessBlock(inoutBlock);
d2ProcessBlock(inoutBlock);
}
void TripleDES_Decryption::ProcessBlock(const byte inBlock, byte outBlock) const
{
d1ProcessBlock(inBlock, outBlock);
eProcessBlock(outBlock);
d2ProcessBlock(outBlock);
}
NAMESPACE_END
程序运行如下:
DES(Data Encryption Standard)是一种常见的分组加密算法,由IBM公司在1971年提出。它是一种对称加密算法,也就是说它使用同一个密钥来加密和解密数据。
DES使用一个56位的初始密钥,但是这里提供的是一个64位的值,这是因为在硬件实现中每8位可以用于奇偶校验。可以通过设定8位字符串,由 crypto/des 库的 desNewCipher(key) 函数生成密钥
DES分组的大小是64位,如果加密的数据长度不是64位的倍数,可以按照某种具体的规则来填充位。常用的填充算法有 pkcs5 , zero 等
没有软件就比较麻烦了,这个软件上实现比较容易。
算法主要包括:
16个子密钥产生器
初始置换IP
16轮迭代的乘积变换 — 关键
逆初始置换IP-1
•PC-1 (Permuted Choice):
–负责取出由用户提供的56bits密钥(即去除第8,16,24,32,40,48,56,64位),并置换
–将56bits分成左右两半,并分别存到C0和D0中
•计算第i个子密钥ki (i=1,2,3,, 16)
–将Ci-1和Di-1分别循环左移指定位数,对应的结果分别存到Ci和Di中
–将Ci和Di整合后,进行压缩置换(PC-2):
•抛弃8位,得到48位的子密钥;并置换
初始置换IP和逆初始置换IP-1
•初始置换IP
–将64 bit明文的位置进行置换,得到一个乱序的64 bit明文组
–而后成左右两段,每段为32 bit,以L0和R0表示
•逆初始置换IP-1。将16轮迭代后给出的64 bit组进行置换,得到输出的密文组。输出为阵中元素按行读得的结果。
•IP和IP-1在密码意义上作用不大,它们的作用在于打乱原来输入x的ASCII码字划分的关系,并将原来明文的校验位x8, x16,L, x64变成为IP输出的一个字节。
•乘积变换是DES算法的核心部分。
•三个关键函数:
–扩展函数E
–选择压缩运算S(S盒)
–置换运算P(P盒)
/// <summary>
/// 加密原函数
/// </summary>
/// <param name="str_in_data">加密原串</param>
/// <param name="str_DES_KEY">密钥</param>
/// <returns>加密串</returns>
public static string Encrypt_DES16(string str_in_data, string str_DES_KEY)
{
try
{
byte[] shuju = new byte[8];
byte[] keys = new byte[8];
for (int i = 0; i < 8; i++)
{
shuju[i] = ConvertToByte(str_in_dataSubstring(i 2, 2), 16);
keys[i] = ConvertToByte(str_DES_KEYSubstring(i 2, 2), 16);
}
DES desEncrypt = new DESCryptoServiceProvider();
desEncryptMode = CipherModeECB;
//desEncryptKey = ASCIIEncodingASCIIGetBytes(str_DES_KEY);
desEncryptKey = keys;
byte[] Buffer;
Buffer = shuju;//ASCIIEncodingASCIIGetBytes(str_in_data);
ICryptoTransform transForm = desEncryptCreateEncryptor();
byte[] R;
R = transFormTransformFinalBlock(Buffer, 0, BufferLength);
string return_str = "";
foreach (byte b in R)
{
return_str += bToString("X2");
}
return_str = return_strSubstring(0, 16);
return return_str;
}
catch (Exception e)
{
throw e;
}
}
随机密钥加密算法:RC4
位密码算法:DES 三重DES(Triple-DES)仍然是很安全的,但是也只是在别无他法的情况下的一个较好的选择。显然高级加密标准(AES)是一个更好的加密算法,NIST用AES代替Triple-DES作为他们的标准(下面有更详细的讨论)。其他较好的算法包括另外两个AES的变种算法Twofish和Serpent-也称为CAST-128,它是效率和安全的完美结合。这几个算法不仅比DES更安全,而且也比DES的速度更快。为什么要使用一些又慢又不安全的算法呢?SHA1是一个哈希函数,而不是一个加密函数。作为一个哈希函数,SHA1还是相当优秀的,但是还需要几年的发展才能用作加密算法。如果你正在设计一个新系统,那么谨记你可能会在若干年后用SHA1代替目前的算法。我再重复一遍:只是可能。呵呵,希望能帮到你!谢谢望采纳哦!
欢迎分享,转载请注明来源:内存溢出
微信扫一扫
支付宝扫一扫
评论列表(0条)