
余弦(余弦函数),三角函数的一种。在Rt△ABC(直角三角形)中,∠C=90°(如概述图所示),∠A的余弦是它的邻边比三角形的斜边,即cosA=b/c,也可写为cosa=AC/AB。余弦函数:f(x)=cosx(x∈R)。
正切,数学术语,在Rt△ABC(直角三角形)中,∠C=90°,AB是∠C的对边c,BC是∠A的对边a,AC是∠B的对边b,正切函数就是tanB=b/a,即tanB=AC/BC。
正弦(sine),数学术语,是三角函数的一种,在直角三角形中,任意一锐角∠A的对边与斜边的比叫做∠A的正弦,记作sinA(由英语sine一词简写得来),即sinA=∠A的对边/斜边。
古代说法,正弦是股与弦的比例。
在直角三角形中,某锐角的相邻直角边和相对直角边的比,叫做该锐角的余切[1]。余切与正切互为倒数,用“cot+角度”表示。余切函数的图象由一些隔离的分支组成(如图)。余切函数是无界函数,可取一切实数值,也是奇函数和周期函数,其最小正周期是π
正弦是sin,余弦是cos是相对直角三角形来说的,正弦是一个角的对边比斜边,余弦是一个角的临边比斜边。
在直角三角形中,任意一锐角∠A的对边与斜边的比叫做∠A的正弦,记作sinA(由英语sine一词简写得来),即sinA=∠A的对边/斜边。
三角函数的一种。在Rt△ABC(直角三角形)中,∠C=90°,∠A的余弦是它的邻边比三角形的斜边,即cosA=b/c,也可写为cosa=AC/AB。余弦函数:f(x)=cosx(x∈R)。
扩展资料:
在RT△ABC中,如果锐角A确定,那么角A的对边与邻边的比便随之确定,这个比叫做角A 的正切,记作tanA,即tanA=角A 的对边/角A的邻边。
同样,在RT△ABC中,如果锐角A确定,那么角A的对边与斜边的比便随之确定,这个比叫做角A的正弦,记作sinA,即sinA=角A的对边/角A的斜边。
同样,在RT△ABC中,如果锐角A确定,那么角A的邻边与斜边的比便随之确定,这个比叫做角A的余弦,记作cosA,即cosA=角A的邻边/角A的斜边。
若记m(c1,c2)为c的两值为正根的个数,c1为c的表达式中根号前取加号的值,c2为c的表达式中根号前取减号的值:
①若m(c1,c2)=2,则有两解;
②若m(c1,c2)=1,则有一解;
③若m(c1,c2)=0,则有零解(即无解)。
注意:若c1等于c2且c1或c2大于0,此种情况算到第二种情况,即一解。
——余弦
——正弦
三角函数余弦定理公式为cosA=(b²+c²-a²)/2bc;cosA=邻边比斜边。
三角函数余弦定理公式: f(x)=COsx (xER)。余弦(余弦函数),三角函数的一种。在Rt△ABC(直角三角形)中,ZC=90°,zA的余弦是它的邻边比三角形的斜边,即cosA=blc,也可写为cosa=ACIAB。
三角函数是基本初等函数之一,是以角度(数学上最常用弧度制,下同)为自变量,角度对应任意角终边与单位圆交点坐标或其比值为因变量的函数。也可以等价地用与单位圆有关的各种线段的长度来定义。三角函数在研究三角形和圆等几何形状的性质时有重要作用,也是研究周期性现象的基础数学工具。
实际应用
在实际生活中,余弦定理是在计算机应有技术中的智能推荐系统,新闻分类中的基本算法之一。
从吴军的《数学之美》那本书上知道余弦公式是可以对新闻进行分类的,当然就可以用来对用户进行分类了。
引用《数学之美》文章中的话:“向量实际上是多维空间中有方向的线段。
如果两个向量的方向一致,即夹角接近零,那么这两个向量就相近。而要确定两个向量方向是否一致,这就要用到余弦定理计算向量的夹角了。”
“当两条新闻向量夹角的余弦等于一时,这两条新闻完全重复(用这个办法可以删除重复的网页);当夹角的余弦接近于一时,两条新闻相似,从而可以归成一类;夹角的余弦越小,两条新闻越不相关。”同理,可以在推荐系统中用来计算用户或者商品的相似性。
余弦(余弦函数),三角函数的一种。
在Rt△ABC(直角三角形)中,∠C=90°(如概述图所示),∠A的余弦是它的邻边比三角形的斜边,即cosA=b/c,也可写为cosa=AC/AB。余弦函数:f(x)=cosx(x∈R)。
中文名
余弦
外文名
cosine
表达式
cos
适用领域
理工学科
应用学科
数学几何
余弦值是一种角度的函数,每个角度都对应一个余弦值,且该数值等于含有这个角度的直角三角形的这个角度的相邻直角边与斜边之比,在角度确定的情况下,余弦值是定值,例如:∠A的余弦值如果是k,就表示为cos∠A=k!
余弦关系
余弦在Rt△ABC(直角三角形)中,∠C=90°,∠A的余弦是它的邻边比三角形的斜边,即cosA=b/c,也可写为cosa=AC/AB。余弦函数:f(x)=cosx(x∈R)。
在直角坐标系中,给定单位圆,对任意角α,使角α的顶点与原点重合,始边与x轴非负半轴重合,终边与单位圆交于点P(u,v),那么点P的纵坐标v叫做角α的正弦函数,记作v=sinα。
通常,我们用x表示自变量,即x表示角的大小,用y表示函数值,这样我们就定义了任意角的三角函数y=sin x,它的定义域为全体实数,值域为[-1,1]。
欢迎分享,转载请注明来源:内存溢出
微信扫一扫
支付宝扫一扫
评论列表(0条)