
1、对于任意实数x1,x2(x1<x2),有 P{x1<X≤x2}=P{X≤x2}-P{X≤x1}=F(x2)-F(x1)>=0。首先明白分布函数的定义。单调不减是指可以等于0。
2、右连续是指函数在区间最右边的点上有定义。
3、请根据回答1中的分布函数定义自行解答。
二维连续型函数找上下限的方法:
1、根据函数图像即可确定。
2、先X还是先Y,其实都是一样的,复习一下二重积分。
3、当二维连续型随机变量的函数为线性函数时,均可采用分布函数法,借助图形,利用公式计算出结果但要根据函数曲线与所规定的线性区分。
分布函数是概率统计中重要的函数,正是通过它,可用数学分析的方法来研究随机变量。分布函数是随机变量最重要的概率特征,分布函数可以完整地描述随机变量的统计规律,并且决定随机变量的一切其他概率特征。
若已知X的分布函数,就可以知道X落在任一区间上的概率,在这个意义上说,分布函数完整地描述了随机变量的统计规律性。随机变量X的分布函数F(x)表示随机变量X的取值小于x时的概率:P(X<x)。大X表示随机变量,小x表示随机变量X所取的具体数值。P表示概率。
随机变量X的分布函数就是一个函数F(x)=P(X≤x),而随机变量函数的分布指的是,若X是随机变量,则Y=g(X)也是随机变量,Y的分布规律就是随机变量X的函数的分布,这个规律可以用分布函数表示,也可以用概率表或概率密度表示。
随机变量是由随机事件得到的变量,名为变量,实质上是一个函数,是从样本空间到实数上的一个单值函数,X(e):S→R。随机变量的引入大大简化了随机事件的刻画,对进一步研究随机事件的概率也起到了优化的作用。
概率论中重点考察的概率实际上是值域缩小到[0,1]区间的一个函数。自变量为随机事件,因变量为该随机事件发生的可能性的大小。对每一个随机事件(自变量),在对应法则下,能确定其发生的可能性大小——概率(因变量)。
引入随机变量之后,概率就为实数到实数上的一个对应关系,等价于高等数学里定义的函数概念。
统计学中,z分布指的是正态分布。
正态分布最早由A棣莫弗在求二项分布的渐近公式中得到。CF高斯在研究测量误差时从另一个角度导出了它。PS拉普拉斯和高斯研究了它的性质。
正态分布概念是由德国的数学家和天文学家Moivre于1733年首次提出的,但由于德国数学家Gauss率先将其应用于天文学研究,故正态分布又叫高斯分布。
统计学正态分布的特点
现今德国10马克的印有高斯头像的钞票,其上还印有正态分布的密度曲线。这传达了一种想法:在高斯的一切科学贡献中,其对人类文明影响最大者,就是这一项。在高斯刚作出这个发现之初,也许人们还只能从其理论的简化上来评价其优越性,其全部影响还不能充分看出来。
这要到20世纪正态小样本理论充分发展起来以后。拉普拉斯很快得知高斯的工作,并马上将其与他发现的中心极限定理联系起来,为此,他在即将发表的一篇文章(发表于1810年)上加上了一点补充,指出如若误差可看成许多量的叠加。
根据他的中心极限定理,误差理应有高斯分布。这是历史上第一次提到所谓“元误差学说”——误差是由大量的、由种种原因产生的元误差叠加而成。后来到1837年,海根(GHagen)在一篇论文中正式提出了这个学说。
什么是随机变量?在随机试验中测定或观察的量就称为随机变量。随机变量可以是自变量,也可以是因变量,还可以是无关变量。随机变量(random variable)表示随机试验各种结果的实值单值函数。例如某一时间内公共汽车站等车乘客人数,电话交换台在一定时间内收到的呼叫次数等等,都是随机变量的实例。随机变量的分布随机变量的分布指的是随机变量的概率分布。要全面了解一个随机变量,不但要知道它取哪些值,而且要知道它取这些值的规律,即要掌握它的概率分布。随机变量的分布函数概率分布可以由分布函数刻画。若知道一个随机变量的分布函数,则它取任何值和它落入某个数值区间内的概率都可以求出。有些随机现象需要同时用多个随机变量来描述。例如 ,子d着点的位置需要两个坐标才能确定,它是一个二维随机变量。类似地,需要n个随机变量来描述的随机现象中,这n个随机变量组成n维随机向量。描述随机向量的取值规律 ,用联合分布函数。随机向量中每个随机变量的分布函数,称为边缘分布函数。若联合分布函数等于边缘分布函数的乘积 ,则称这些单个随机变量之间是相互独立的。随机变量分布函数的数学定义设X为一随机变量,则对任意实数x,{X≤x}是一个随机事件,称F(x)=P{X≤x}为随机变量x的分布函数。它的定义域是(-∞,+∞),值域是[0,1],F(-∞)=0,F(+∞)=1
概率论知识点总结
概率论需要学生们对于概率概念的熟悉,而知识点一般不算十分的难。下面概率论知识点总结是我想跟大家分享的,欢迎大家浏览。
概率论知识点总结
第一章 概率论的基本概念
1 随机试验
确定性现象:在自然界中一定发生的现象称为确定性现象。
随机现象: 在个别实验中呈现不确定性,在大量实验中呈现统计规律性,这种现象称
为随机现象。
随机试验:为了研究随机现象的统计规律而做的的实验就是随机试验。
随机试验的特点:1)可以在相同条件下重复进行;
2)每次试验的可能结果不止一个,并且能事先明确试验的所有可能
结果;
3)进行一次试验之前不能确定哪一个结果会先出现;
2 样本空间、随机事件
样本空间:我们将随机试验E的所有可能结果组成的集合称为E的样本空间,记为S。 样本点:构成样本空间的元素,即E中的每个结果,称为样本点。
事件之间的基本关系:包含、相等、和事件(并)、积事件(交)、差事件(A-B:包含A
不包含B)、互斥事件(交集是空集,并集不一定是全集)、对立
事件(交集是空集,并集是全集,称为对立事件)。
事件之间的运算律:交换律、结合律、分配率、摩根定理(通过韦恩图理解这些定理)
3 频率与概率
频数:事件A发生的次数
频率:频数/总数
概率:当重复试验的次数n逐渐增大,频率值就会趋于某一稳定值,这个值就是概率。 概率的特点:1)非负性。2)规范性。3)可列可加性。
概率性质:1)P(空集)=0,2)有限可加性,3)加法公式:P(A+B)=P(A)+P(B)
-P(AB)
4 古典概型
学会利用排列组合的知识求解一些简单问题的概率(**问题,超几何分布,分配问题,
插空问题,捆绑问题等等)
5 条件概率
定义:A事件发生条件下B发生的概率P(B|A)=P(AB)/P(A)
乘法公式:P(AB)=P(B|A)P(A)
全概率公式与贝叶斯公式
6 独立性检验
设 A、B是两事件,如果满足等式
P(AB)=P(A)P(B)
则称事件A、B相互独立,简称A、B独立。
第二章随机变量及其分布
1 随机变量
定义:设随机试验的样本空间为S={e} X=X(e)是定义在样本空间S上的单值函数,称
X=X(e)为随机变量。
2 离散型随机变量及其分布律
三大离散型随机变量的'分布
1)(0——1)分布。E(X)=p, D(X )=p(1-p)
2)伯努利试验、二项分布 E(X)=np, D(X)=np(1-p)
3) 泊松分布 P(X=k)= (^k)e^(- )/k! (k=0,1,2,……)
E(X)=,D(X)=
注意:当二项分布中n 很大时,可以近似看成泊松分布,即np=
3 随机变量的分布函数
定义:设X是一个随机变量,x是任意的实数,函数
F(x)=P(X≤x),x属于R 称为X的分布函数
分布函数的性质:
1) F(x)是一个不减函数
2) 0≤F(x)≤1
离散型随机变量的分布函数的求法(由分布律求解分布函数)
连续性随机变量的分布函数的求法(由分布函数的图像求解分布函数,由概率密度求
解分布函数)
4 连续性随机变量及其概率密度
连续性随机变量的分布函数等于其概率密度函数在负无穷到x的变上限广义积分 相反密度函数等与对应区间上分布函数的导数
密度函数的性质:1)f(x)≥0
2) 密度函数在负无穷到正无穷上的广义积分等于1
三大连续性随机变量的分布: 1)均与分布 E(X)=(a+b)/2 D (X)=[(b-a)^2]/12
2)指数分布 E(X)=θ D(X)=θ^2
3)正态分布一般式(标准正态分布)
5 随机变量的函数的分布
1)已知随机变量X的 分布函数求解Y=g(X)的分布函数
2)已知随机变量X的 密度函数求解Y=g(X)的密度函数
第三章 多维随机变量及其分布(主要讨论二维随机变量的分布)
1二维随机变量
定义 设(X,Y)是二维随机变量,对于任意实数x, y,二元函数
F(x, Y)=P[(X≤x)交(Y≤y)] 称为二维随机变量(X,Y)的分布函数或称为随机变量联合分布函数
离散型随机变量的分布函数和密度函数
连续型随机变量的分布函数和密度函数
重点掌握利用二重积分求解分布函数的方法
2边缘分布
离散型随机变量的边缘概率
连续型随机变量的边缘概率密度
3相互独立的随机变量
如果X,Y相互独立,那么X,Y的联合概率密度等于各自边缘的乘积
5 两个随机变量的分布函数的分布
关键掌握利用卷积公式求解Z=X+Y的概率密度
第四章随机变量的数字特征
1数学期望
离散型随机变量和连续型随机变量数学期望的求法
六大分布的数学期望
2方差
连续性随机变量的方差
D(X)=E(X^2)-[E (X )]^2
方差的基本性质:
1) 设C是常数,则D(C)=0
2) 设X随机变量,C是常数,则有
D(CX)=C^2D(X)
3) 设X,Y是两个随机变量,则有
D(X+Y)=D(X)+D(Y)+2E{(X-E(X))(Y-E(Y))} 特别地,若X,Y不相关,则有D(X+Y)=D(X)+ D(Y) 切比雪夫不等式的简单应用
3 协方差及相关系数
协方差:Cov(X ,Y )= E{(X-E(X))(Y-E(Y))}
相关系数:m=Cov(x,y)/√D(X) √D(Y)
当相关系数等于0时,X,Y 不相关,Cov(X ,Y )等于0 不相关不一定独立,但独立一定不相关
;欢迎分享,转载请注明来源:内存溢出
微信扫一扫
支付宝扫一扫
评论列表(0条)