
用反三角函数来计算,计算器上也有这个功能。用反三角函数表来查找。一些特殊角,可以记住。角度有两个单位制,一个是度,一个是弧度180度=π弧度,如果角度是以弧度制出现的,角的弧度数与实数是一一对应的。
正弦值在
随角度增大(减小)而增大(减小),在
随角度增大(减小)而减小(增大);
例如,因为,sin30° = 1/2,如果,sinx = 1/2,则可知, x = 30°,是x的一个值。
扩展资料
三角函数的角度换算公式
1、 公式之一: 设α为任意角,终边相同的角的同一三角函数的值相等: sin(2kπ+α)=sinα
cos(2kπ+α)=cosα
tan(2kπ+α)=tanα
cot(2kπ+α)=cotα
2、任意角α与 -α的三角函数值之间的关系:
sin(-α)=-sinα
cos(-α)=cosα
tan(-α)=-tanα
cot(-α)=-cotα
-三角函数
e^(iα)=cosα+isinα; e^(-iα)=cosα-isinα;cosα=1/2[e^(iα)+e^(-iα)];sinα=-i/2[e^(iα)-e^(-iα)]。
三角函数与欧拉
三角学是以三角形的边角关系为基础,研究几何图形中的数量关系及其在测量方面的应用的数学分支。“三角学”一词的英文“trigonometry ”就是由两个希腊词“三角形”和“测量”合成的。现在,三角学主要研究三角函数的性质及其应用。
1463年,法国学者缪勒在《论三角》中系统总结了前人对三角的研究成果。17世纪中叶,三角由瑞士人邓玉函(Jean Terrenz 1576-1630)传入中国。在邓玉函的著作《大测》二卷中,主要论述了三角函数的性质及三角函数表的制作和用法。当时,三角函数是用左图中的八条线段的长来定义的,这已与我们刚学过的三角函数线十分类似。
著名数学家、物理学家和天文学家欧拉(Léonard Euler)1707年出生于瑞士的巴塞尔,1720年进入巴塞尔大学学习,后获硕士学们。1727年起,他先后到俄国、德国工作,1766年再次到俄国直至逝世。
1748年,欧拉出版了一部划时代的著作《无穷小分析概论》,其中提出三角函数是对应的三角函数线与圆的半径的比值,并令圆的半径为1,这使得对三角函数的研究大为简化,他还在此书的第八章中提出了弧度制的思想。
他认为,如果把半径作为1个单位长度,那么半圆的长就是Π,所对圆心角的正弦是0,即sin Π=0,同理,圆的1/4的长是Π/2,所对圆心角的正弦是1,可记作sin Π/2=1。这一思想将线段与弧的度量单位统一起来,大大简化了某些三角公式及其计算。
18世纪中叶,欧拉给出了三角函数的现代理论,他还成功地把三角函数的概念由褛范围推广到复数范围。
值得指出,1735年,欧拉右眼失明,《无穷小分析概论》这部著作出自版于他这一不幸之后。他的著作,在样式、范围和记号方面堪称典范,因此被许多大学作为教科书采用。
1766年,他回到俄国不入,又转成双目失明,他以惊人的毅力,在圣彼得堡又用口述由别人记录的方式工作了近17年,直到1783年去世。1909年,瑞士自然科学学会开始出版欧拉全集,使他卷帙浩繁的著作得以流芳百世,至今已出版七十余卷。
欧拉公式的发现过程
早在1639年,法国著名数学家笛卡尔(解析几何学的创始人)就发现了一个规律:不管由多边形围成的凸多面体的外形如何变化,其顶点数(V),棱数(E)和面数(F)都满足一个简单的公式——V-E+F=2。但在当时这个规律并未广泛流传。
过了一百多年后,欧拉在1750年又重新独立地发现了这个规律,于是这个广为流传的公式被命名为欧拉多面体公式。
欧拉的思路大致是这样的:任意三角形的内角和一定是180°,用弧度表示就是π,这个角度是和三角形的形状和大小无关的。进而就能发现,任何一个凸n边形的内角和为(n-2)π,这说明凸多边形的内角和是由边数的多少决定的,也和形状、大小等因素无关。把这个理论推广到空间中若干个多边形围成的凸多面体,又有怎样的性质呢?
欧拉首先选择了几个形状简单的多面体进行推理,并将观察所得进行了归纳总结,他发现这些多面体的面角和是由多面体的顶点数决定的。欧拉又把这个猜想进一步推广,就得到了V-E+F=2的最终结论。
事实上,欧拉多面体公式的证明方法有很多种,比如数学归纳法,球面几何法等。
欧拉是一位不折不扣的数学天才。但是他的非凡成就也和他对数学的热爱有关。在欧拉人生的最后7年,他双目完全失明,但是仍然留下了大量数学遗产。这或许更能说明,为什么数学史上能留下那么多经典的欧拉公式吧。
设三边为a,b,c
则 tanA=a/b
tanB=b/a
根据数值对表查角度。
1、直角三角形
直角三角形是一个几何图形,是有一个角为直角的三角形,有普通的直角三角形和等腰直角
三角形两种。其符合勾股定理,具有一些特殊性质和判定方法。
2、特殊性质
(1)直角三角形两直角边的平方和等于斜边的平方。如图,∠BAC=90°,则
AB+AC²=BC²(勾股定理)
(2)在直角三角形中,两个锐角互余。如图,若∠BAC=90°,则∠B+∠C=90°
(3)直角三角形中,斜边上的中线等于斜边的一半(即直角三角形的外心位于斜边的中点,
外接圆半径R=C/2)。该性质称为直角三角形斜边中线定理。
(4)直角三角形的两直角边的乘积等于斜边与斜边上高的乘积。
3、三角函数
三角函数值除了查表,也可以用电脑系统自带的计算器,计算。开始——程序——附件——
计算器。这个计算器有两种模式,点‘查看’有一个下拉菜单,有标准型和科学型,选择科
学型,输入度数后正弦点sin,余弦点cos,正切点tan,值就直接显示出来了。
用勾股定理b^2=c^2-a^2求出b的长度,然后利用正弦定理b/(sinB)=c/(sin90)得出sinB的值,最后得sinB=((c^2-a^2)开根号)/c,就能求得所需的值。
直角三角形分为两种情况,有普通的直角三角形,还有等腰直角三角形(特殊情况)在直角三角形中,与直角相邻的两条边称为直角边,直角所对的边称为斜边。直角三角形直角所对的边也叫作“弦”。若两条直角边不一样长,短的那条边叫作“勾”,长的那条边叫作“股”。
等腰直角三角形是一种特殊的三角形,具有所有三角形的性质:具有稳定性、内角和为180°。两直角边相等,两锐角为45°,斜边上中线、角平分线、垂线三线合一,等腰直角三角形斜边上的高为此三角形外接圆的半径R。
扩展资料:
三角形的性质,具有一些特殊的性质:
1、直角三角形两直角边的平方和等于斜边的平方。如图,∠BAC=90°,则AB2+AC2=BC2(勾股定理)
2、在直角三角形中,两个锐角互余。如图,若∠BAC=90°,则∠B+∠C=90°
3、直角三角形中,斜边上的中线等于斜边的一半(即直角三角形的外心位于斜边的中点,外接圆半径R=C/2)。该性质称为直角三角形斜边中线定理。
4、直角三角形的两直角边的乘积等于斜边与斜边上高的乘积。
5、Rt△ABC中,∠BAC=90°,AD是斜边BC上的高,则有射影定理。
--正弦定理
--勾股定理
1、直接由反三角函数(asin、acos、atan)就可以求出弧度值,如果要角度值,使用(deg)函数转换就可以了。例如,要求正弦值为05的角度,则在计算器中输入:deg(asin(05)),再按“等号”。
2、打开手机,进入主界面,找到“计算器”,并点击,进入到“小牛计算器”的计算器软件“标准”型界面(这个计算器是小米手机自安装的计算器,还是蛮好用的),这个界面没有我们想要的三角函数计算公式。接着用手指往上滑动这两个三角形符号,来到工具箱和历史记录界面,在历史记录这一栏里,你可以查找以往使用过的所有计算过程和公式,只需要点击对应的那条记录即可。
欢迎分享,转载请注明来源:内存溢出
微信扫一扫
支付宝扫一扫
评论列表(0条)