
层次分析法
层次分析法根据问题的性质和要达到的总目标,将问题分解为不同的组成因素,并按照因素间的相互关联影响以及隶属关系将因素按不同层次聚集组合,形成一个多层次的分析结构模型,从而
最终使问题归结为最低层(供决策的方案、措施等)相对于最高层(总目标)的相对重要权值的确定或
相对优劣次序的排定。
目标层 准则层 决策层
比如在旅游案例中,最终目的地就是目标层,准则层就是各个评价标准,决策层就是有几个方案
成对比较矩阵(算权重)
因为成对比较会不一致,允许不一致,但要确定不一致的允许范围。
python实现
import numpy as np
import pandas as pd
import warnings
class AHP:
def __init__(self, criteria, samples):
self.RI = (0, 0, 0.58, 0.9, 1.12, 1.24, 1.32, 1.41, 1.45, 1.49)
self.criteria = criteria
self.samples = samples
self.num_criteria = criteria.shape[0]
self.num_project = samples[0].shape[0]
def calculate_weights(self, input_matrix):
input_matrix = np.array(input_matrix)
n, n1 = input_matrix.shape
assert n==n1, "the matrix is not orthogonal"
for i in range(n):
for j in range(n):
if np.abs(input_matrix[i,j]*input_matrix[j,i]-1) > 1e-7:
raise ValueError("the matrix is not symmetric")
eigen_values, eigen_vectors = np.linalg.eig(input_matrix)
max_eigen = np.max(eigen_values)
max_index = np.argmax(eigen_values)
eigen = eigen_vectors[:, max_index]
eigen = eigen/eigen.sum()
if n > 9:
CR = None
warnings.warn("can not judge the uniformity")
else:
CI = (max_eigen - n)/(n-1)
CR = CI / self.RI[n-1]
return max_eigen, CR, eigen
def calculate_mean_weights(self,input_matrix):
input_matrix = np.array(input_matrix)
n, n1 = input_matrix.shape
assert n == n1, "the matrix is not orthogonal"
A_mean = []
for i in range(n):
mean_value = input_matrix[:, i]/np.sum(input_matrix[:, i])
A_mean.append(mean_value)
eigen = []
A_mean = np.array(A_mean)
for i in range(n):
eigen.append(np.sum(A_mean[:, i])/n)
eigen = np.array(eigen)
matrix_sum = np.dot(input_matrix, eigen)
max_eigen = np.mean(matrix_sum/eigen)
if n > 9:
CR = None
warnings.warn("can not judge the uniformity")
else:
CI = (max_eigen - n) / (n - 1)
CR = CI / self.RI[n - 1]
return max_eigen, CR, eigen
def run(self, method="calculate_weights"):
weight_func = eval(f"self.{method}")
max_eigen, CR, criteria_eigen = weight_func(self.criteria)
print('准则层:最大特征值{:<5f},CR={:<5f},检验{}通过'.format(max_eigen, CR, '' if CR < 0.1 else '不'))
print('准则层权重={}\n'.format(criteria_eigen))
max_eigen_list, CR_list, eigen_list = [], [], []
for sample in self.samples:
max_eigen, CR, eigen = weight_func(sample)
max_eigen_list.append(max_eigen)
CR_list.append(CR)
eigen_list.append(eigen)
pd_print = pd.DataFrame(eigen_list, index=['准则' + str(i+1) for i in range(self.num_criteria)],
columns=['方案' + str(i+1) for i in range(self.num_project)],
)
pd_print.loc[:, '最大特征值'] = max_eigen_list
pd_print.loc[:, 'CR'] = CR_list
pd_print.loc[:, '一致性检验'] = pd_print.loc[:, 'CR'] < 0.1
print('方案层')
print(pd_print)
# 目标层
obj = np.dot(criteria_eigen.reshape(1, -1), np.array(eigen_list))
print('\n目标层', obj)
print('最优选择是方案{}'.format(np.argmax(obj)+1))
return obj
# 改下面的比较矩阵
if __name__ == '__main__':
# 准则重要性矩阵
criteria = np.array([[1, 1/2, 4, 3, 3],
[2, 1, 7, 5, 5],
[1 / 4, 1 / 7, 1, 1 / 2, 1/3],
[1 / 3, 1 / 5, 2, 1,1],
[1/3, 1/5, 3, 1, 1]])
# 对每个准则,方案优劣排序
sample1 = np.array([[1, 2, 5], [1/2, 1, 2], [1/5, 1/2, 1]])
sample2 = np.array([[1, 1/3, 1/8], [3, 1, 1/3], [8, 3, 1]])
sample3 = np.array([[1, 1, 3], [1, 1, 3], [1 / 3, 1 / 3, 1]])
sample4 = np.array([[1, 3, 4], [1 / 3, 1, 1], [1 / 4, 1, 1]])
sample5 = np.array([[1, 1, 1/4], [1, 1, 1/4], [4, 4, 1]])
samples = [sample1, sample2, sample3, sample4, sample5]
a = AHP(criteria, samples).run("calculate_mean_weights")
欢迎分享,转载请注明来源:内存溢出
微信扫一扫
支付宝扫一扫
评论列表(0条)