
比如一个大数据库叫ImageNet,有十几亿张图片,用了这么大量的图片,我们才能训练我们的深度神经网络去做图片中猫猫、狗狗、车辆的识别。
如果没有这些海量的数据,很多机器学习算法是不能用的,像我们现在看视频网站它是面向百亿特征,千亿参数,万亿样本,你没有万亿样本就支撑不了百亿特征,你可能要有一个亿的样本才有可能支撑百万特征,而且深度学习是需要海量特征做特征工程的,所以这个时候大数据实际是很多机器学习算法得以能够发展的基础,但是发展到一定程度,有些算法它又突然脱离数据了,比如说我们做增强学习,像早期的阿法狗(AlphaGo),它学了几十万专业棋手之间的对局,它是大师,那它就下得很好,后来的阿法Zero(Alpha Zero),它是自己和自己下棋,反正有规则,所以它的数据实际不是真的数据,是生成出来的,它没有用真实数据,但是它用了增强学习,所以说它最后下得比阿法狗还强。
以前想都不敢想的事情,比如机器人,比如登上月球,再比如人工智能,现在竟然全都实现了!有木有感觉没有做不到,只有想不到。
贫穷限制了我的想象力!怎样脱贫呢?听说现在人工智能程序员工资很高,要不咱们来学人工智能,做个人工智能程序员肿么样?还是先来看看2020北大青鸟http://www.kmbdqn.cn/学人工智能需要学哪些东西吧!如果你参加不同的人工智能培训机构的话,那么课程设置也会有细微的差别。
但是如果一个靠谱的人工智能培训机构一般都会学这些东西:学习人工智能需要掌握python、网络爬虫、数据库知识(NoSQL、MongoDB、Redis等)、还有matplotlib、Pandas、IaaS/PaaS/SaaS、scrapy、TensorFlow、Fintech、机器学习算法、深度学习算法等。
看到这么多是不是很头大,觉得学到地老天荒也学不完哦。
我先来给你打个强心剂吧,如果你选择参加全日制的人工智能培训班,而且还是在你是零基础的情况下,一般是五个月左右。
开不开心?只要五个月就可以成为一名人工智能工程师。
但是这也是建立在你认真学习的情况下哦,如果你不认真学的话,那五年也不一定可以学完。
了解大数据与人工智能的区别与联系,首先我们从认知和理解大数据和人工智能的概念开始。
1、大数据
大数据是物联网、Web系统和信息系统发展的综合结果,其中物联网的影响最大,所以大数据也可以说是物联网发展的必然结果。大数据相关的技术紧紧围绕数据展开,包括数据的采集、整理、传输、存储、安全、分析、呈现和应用等等。目前,大数据的价值主要体现在分析和应用上,比如大数据场景分析等。
2、人工智能
人工智能是典型的交叉学科,研究的内容集中在机器学习、自然语言处理、计算机视觉、机器人学、自动推理和知识表示等六大方向,目前机器学习的应用范围还是比较广泛的,比如自动驾驶、智慧医疗等领域都有广泛的应用。人工智能的核心在于“思考”和“决策”,如何进行合理的思考和合理的行动是目前人工智能研究的主流方向。
3、大数据与人工智能
大数据和人工智能虽然关注点并不相同,但是却有密切的联系,一方面人工智能需要大量的数据作为“思考”和“决策”的基础,另一方面大数据也需要人工智能技术进行数据价值化 *** 作,比如机器学习就是数据分析的常用方式。在大数据价值的两个主要体现当中,数据应用的主要渠道之一就是智能体(人工智能产品),为智能体提供的数据量越大,智能体运行的效果就会越好,因为智能体通常需要大量的数据进行“训练”和“验证”,从而保障运行的可靠性和稳定性。
目前大数据相关技术已经趋于成熟,相关的理论体系已经逐步完善,而人工智能尚处在行业发展的初期,理论体系依然有巨大的发展空间。从学习的角度来说,如果从大数据开始学习是个不错的选择,从大数据过渡到人工智能也会相对比较容易。总的来说,两个技术之间并不存在孰优孰劣的问题,发展空间都非常大。
欢迎分享,转载请注明来源:内存溢出
微信扫一扫
支付宝扫一扫
评论列表(0条)