Java并发编程之美——第八章 Java并发包中线程池ThreadPoolExecutor原理探究

Java并发编程之美——第八章 Java并发包中线程池ThreadPoolExecutor原理探究,第1张

Java并发编程之美——第八章 Java并发包中线程池ThreadPoolExecutor原理探究

Java并发编程之美——第六章 Java并发包中锁原理剖析

Java并发编程之美——第五章 Java并发包中并发List(CopyOnWriteArrayList)源码剖析

Java并发编程之美——第四章 Java并发包中原子 *** 作类原理剖析

Java并发编程之美——第三章 Java并发包中ThreadLocalRandom类原理剖析

Java并发编程之美——第二章 并发编程的其他知识

Java并发编程之美——第一章 Java并发编程基础

文章目录
    • Time 2022-01-02——Hireek
    • 介绍
      • 为什么需要线程池?(线程池解决了什么问题?)
    • ThreadPoolExecutor
      • 类图
      • field
      • Worker——private final class
      • public void execute(Runnable command)
      • private boolean addWorker(Runnable firstTask, boolean core)
      • final void runWorker(Worker w)
    • 总结

Time 2022-01-02——Hireek 介绍 为什么需要线程池?(线程池解决了什么问题?)
  • 当执行大量异步任务时线程池能够提供较好的性能。在不使用线程池时,每当需要执行异步任务时直接new一个线程来运行,而线程的创建和销毁是需要开销的。线程池里面的线程是可复用的,不需要每次执行异步任务时都重新创建和销毁线程。

  • 线程池也提供了一种资源限制和管理的手段,比如可以限制线程的个数,动态新增线程等。

读者也可以自行思考下如何实现线程池?

  • 池化线程
    • 如何创建线程
    • 调度
    • 复用线程
    • 销毁

直接看最核心线程池的实现 ThreadPoolExecutor

ThreadPoolExecutor 类图

ThreadPool-related class description:

The Executor implementations provided in this package implement ExecutorService, which is a more extensive interface. The ThreadPoolExecutor class provides an extensible thread pool implementation. The Executors class provides convenient factory methods for these Executors.

field
public class ThreadPoolExecutor extends AbstractExecutorService {
  
  // 原子int,封装了线程数量和状态,高3位表示状态,低29位表示线程池数量 最大(2^29)-1
  private final AtomicInteger ctl = new AtomicInteger(ctlOf(RUNNING, 0)); 
  private static final int COUNT_BITS = Integer.SIZE - 3;
  // 00011111111111111111111111111111
  private static final int CAPACITY   = (1 << COUNT_BITS) - 1;

  // runState is stored in the high-order bits 
  
  // (高3位) : 11100000000000000000000000000000
  private static final int RUNNING    = -1 << COUNT_BITS;
  // (高三位) : 00000000000000000000000000000000
  private static final int SHUTDOWN   =  0 << COUNT_BITS;
  // (高三位) : 00100000000000000000000000000000
  private static final int STOP       =  1 << COUNT_BITS;
  // (高三位) : 01000000000000000000000000000000
  private static final int TIDYING    =  2 << COUNT_BITS;
  // (高三位) : 01100000000000000000000000000000
  private static final int TERMINATED =  3 << COUNT_BITS;

  // 保存任务的阻塞队列
  private final BlockingQueue workQueue;

  // 锁
  private final ReentrantLock mainLock = new ReentrantLock();

  
  private final HashSet workers = new HashSet();

  
  private final Condition termination = mainLock.newCondition();

  
  private int largestPoolSize; // tracks 跟踪当前线程池的线程(已经存在的)的最大值。

  
  private long completedTaskCount;

  // Factory for new threads. All threads are created using this factory (via method addWorker).
  // 默认实现DefaultThreadFactory
  private volatile ThreadFactory threadFactory;

  
  private volatile RejectedExecutionHandler handler;

  // 存活时间
  private volatile long keepAliveTime;

  
  private volatile boolean allowCoreThreadTimeOut;

  
  private volatile int corePoolSize;
 
  
  private volatile int maximumPoolSize; // 线程池允许创建线程的最大值
}
Worker——private final class
private final class Worker
  extends AbstractQueuedSynchronizer
  implements Runnable {
  
  private static final long serialVersionUID = 6138294804551838833L;

  
  final Thread thread;
  
  Runnable firstTask;
  
  volatile long completedTasks;

  
  Worker(Runnable firstTask) {
    // 在构造函数内首先设置Worker的状态为-1,这是为了避免当前Worker在调用rnnWorker方法前被中断
    // (当其他线程调用了线程池的shutdownNow时,如果Worker状态>=O则会中断该线程)。
    setState(-1); // inhibit interrupts until runWorker
    this.firstTask = firstTask;
    this.thread = getThreadFactory().newThread(this);
  }

  
  public void run() {
    runWorker(this);
  }
}
public void execute(Runnable command)

注释已经很明白了,就不讲了。

public void execute(Runnable command) {
    if (command == null)
        throw new NullPointerException();
    
    int c = ctl.get();
    if (workerCountOf(c) < corePoolSize) {
        if (addWorker(command, true))
            return;
        c = ctl.get();
    }
    if (isRunning(c) && workQueue.offer(command)) {
        int recheck = ctl.get(); // recheck
        if (! isRunning(recheck) && remove(command))
            reject(command);
        else if (workerCountOf(recheck) == 0)
            addWorker(null, false);
    }
    else if (!addWorker(command, false))
        reject(command);
}

主要分析下addWorker

private boolean addWorker(Runnable firstTask, boolean core)
private boolean addWorker(Runnable firstTask, boolean core) {
    retry:
    for (;;) {
        int c = ctl.get();
        int rs = runStateOf(c);

        // Check if queue empty only if necessary.
        if (rs >= SHUTDOWN &&
            ! (rs == SHUTDOWN && // !SHUTDOWN
               firstTask == null && // SHUTDOWN && firstTask!=null
               ! workQueue.isEmpty())) // SHUTDOWN && workQueue.isEmpty()
            return false;
				// for(;;) compareAndIncrementWorkerCount
        for (;;) {
            int wc = workerCountOf(c);
            if (wc >= CAPACITY ||
                wc >= (core ? corePoolSize : maximumPoolSize))
                return false;
            if (compareAndIncrementWorkerCount(c))
                break retry;
            c = ctl.get();  // Re-read ctl
            if (runStateOf(c) != rs)
                continue retry;
            // else CAS failed due to workerCount change; retry inner loop
        }
    }

    boolean workerStarted = false;
    boolean workerAdded = false;
    Worker w = null;
    try {
        w = new Worker(firstTask);
        final Thread t = w.thread;
        if (t != null) {
            final ReentrantLock mainLock = this.mainLock;
          	// 加独占锁,为了实现workers同步,因为可能多个线程调用了线程池的execute方法
            mainLock.lock();
            try {
                // Recheck while holding lock.
                // Back out on ThreadFactory failure or if
                // shut down before lock acquired.
              
              	// 重新检查线程池状态,以避免在获取锁前调用了shutdown
                int rs = runStateOf(ctl.get());

                if (rs < SHUTDOWN ||
                    (rs == SHUTDOWN && firstTask == null)) { // shutdown状态还可能会添加新的线程,继续执行队列中任务
                    if (t.isAlive()) // precheck that t is startable
                        throw new IllegalThreadStateException();
                    workers.add(w);
                    int s = workers.size();
                    if (s > largestPoolSize)
                        largestPoolSize = s;
                    workerAdded = true;
                }
            } finally {
              	// 释放锁
                mainLock.unlock();
            }
            if (workerAdded) {
                t.start(); // 启动线程!
                workerStarted = true;
            }
        }
    } finally {
        if (! workerStarted)
            addWorkerFailed(w);
    }
    return workerStarted;
}
final void runWorker(Worker w)
 
final void runWorker(Worker w) {
    Thread wt = Thread.currentThread();
    Runnable task = w.firstTask;
    w.firstTask = null;
    w.unlock(); // allow interrupts
    boolean completedAbruptly = true;
    try {
        while (task != null || (task = getTask()) != null) { // getTask
          	// 加锁是为了避免在任务运行期间,其他线程调用了shutdown后正在执行的任务被中断(shutdown只会中断当前被阻塞挂起的线程)
            w.lock();
            // If pool is stopping, ensure thread is interrupted;
            // if not, ensure thread is not interrupted.  This
            // requires a recheck in second case to deal with
            // shutdownNow race while clearing interrupt
            if ((runStateAtLeast(ctl.get(), STOP) ||
                 (Thread.interrupted() &&
                  runStateAtLeast(ctl.get(), STOP))) &&
                !wt.isInterrupted())
                wt.interrupt();
            try {
                beforeExecute(wt, task);
                Throwable thrown = null;
                try {
                    task.run();
                } catch (RuntimeException x) { // catch e 防止线程死亡
                    thrown = x; throw x;
                } catch (Error x) {
                    thrown = x; throw x;
                } catch (Throwable x) {
                    thrown = x; throw new Error(x);
                } finally {
                    afterExecute(task, thrown);
                }
            } finally {
                task = null;
                w.completedTasks++;
                w.unlock();
            }
        }
        completedAbruptly = false;
    } finally {
        processWorkerExit(w, completedAbruptly);
    }
}

当然还有getTask()、shutdown()等源码待研究。具体的拒绝策略…

总结

线程池巧妙地使用一个Integer类型的原子变量来记录线程池状态和线程池中的线程个数。通过线程池状态来控制任务的执行,每个Worker线程可以处理多个任务。线程池通过线程的复用减少了线程创建和销毁的开销。还是比较巧妙的。

参考:

  • java并发编程之美

  • https://www.cnblogs.com/liuzhihu/p/8177371.html

加油,温润自己的心!

欢迎分享,转载请注明来源:内存溢出

原文地址:https://www.54852.com/zaji/5696618.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2022-12-17
下一篇2022-12-17

发表评论

登录后才能评论

评论列表(0条)

    保存