
大数据利用的六大现实商业案例_数据分析师考试
大数据正在改变市场的竞争格局。而那些能够充分利用大数据分析的企业往往能够更快地向市场提供产品和服务,更好地保持与顾客需求和欲望的一致性。2014年,调研公司Gartner的调查发现,73%的受访企业在大数据方面进行了投资,或者计划在接下来的24个月内投资大数据项目而2013年的这一数据比例则为64%。改善客户体验和流程效率被受访者排在最高的优先级。
客户体验的改善不管是在线上或线下都在发生着的,数据从智能手机、移动应用程序、POS系统和电子商务网站等等渠道进行收集。随着企业比以往任何时候都能够收集和分析更多的、且类型丰富的数据信息,企业现如今所进行哪些相关工作,以及为什么要进行都需要进行数据量化。而且,那是最灵活的调整自己的经营策略,以提高或维持市场份额的手段。在执行过程中,客户体验的改善有助于提高客户的忠诚度和企业营收的增长。另一方面,如果公司选择无视相关的数据,他们很可能会失去客户和交易,而将其拱手让给那些对于数据分析反应更敏捷,更精明的竞争对手。
企业流程的改进继续专注于提高效率,节约成本,以及提高产品或服务的质量。大数据可以提供比传统系统更深入的见解,因为其有更多的数据点和数据来源分析作为支撑。
无论企业的目标是为了促进营收增长、或是加快产品服务的上市速度、优化劳动力,或是实现其他 *** 作方面的改进,其核心都在与变得更加积极主动,减少被动反应,这就意味着需要使用预测分析,以缩短学习曲线。
有许多使用大数据来提升和改善企业运营的方法,下面将为大家介绍六个典型的案例。
缩短上市时间
推出新的产品或服务涉及多个生命周期阶段,其中一些比另一些更容易加速。在过去的几十年中,药品制造商已经使用临床试验模拟学习速度,降低成本,并减少了参与试验患者的不必要的负担。借助云计算和大数据,临床试验的模拟可以变得更加有利于制造商和患者。
百时美施贵宝公司(bristol-myers squibb) 通过将其内部托管网格环境扩展到AWS云,减少了98%的临床试验模拟时间。该公司还进一步优化了剂量水平,使得药物产品更安全,并只需要较少的临床试验患者的血液样本。
由于临床试验对于数据是高度敏感的,百时美施贵宝公司建立了一个专门的,加密的VPN隧道链接亚马逊网关,并配置了虚拟私有云,以便使得其运行环境能够与公众客户进行隔离。
在迁入云中之前,科学家们使用一个共享的内部环境,所以运行大约数百个项目需要花费60小时。现在,每个科学家都有一个专门的环境,2000个项目大约在1.2小时内就能够处理完毕,而且不会引起影响到团队的其他成员。
迁移到AWS云之后,百时美施贵宝公司得以能够减少儿科研究临床试验受试者的人数,从60减少到40人,同时还缩短了一年多的学习研究时间。
优化劳动力
一些企业的人力资源部门正在使用人才分析和大数据来降低成本,进而有效管理人力资源相关的问题。大数据帮助他们能够有效的选择能够更好的适应企业的新员工,降低员工离职率,了解技能和现有市场劳动力的输出状况,并确定公司前向发展所需要的人才。
施乐公司使用大数据将其呼叫中心的人员流失率降低了20%。要做到这一点,就必须了解是什么原因导致了员工的离职,并确定如何改善员工的敬业度。
改善财务绩效
企业的财务部门已经不仅仅只是进行定期的报告和BI工作了,他们已经在开始利用大数据来降低风险和成本,寻找机会提高预测的准确性。具体地说,他们使用的数据来识别高风险客户和供应商,以阻止欺诈,找准收入泄漏,并发掘新的或更有效的商业模式。
最近,天气预测公司The Weather Company与IBM之间的合作将使企业用户得以更好地管理天气状况对于企业绩效的影响。据The Weather Company介绍,每年,仅在美国天气因素就会造成价值五千亿美元的经济影响。
这些气象数据是来自超过10万台的气象传感器和飞机,以及数以百万计的智能手机、建筑和路上奔跑的车辆。这些数据与其他22亿个独特的预测点的数据来源相结合,平均每天进行100多亿次的实时天气预报。例如,零售商可以使用这些数据信息来调整人员配置和供应链策略。而能源公司将能够借助这些天气数据信息改善供应和预测需求。保险公司将能够向其投保人警告恶劣天气条件,这样他们就可以减少在冰雹灾害天气发生汽车损坏的可能性。
智能化的销售
稍微修改一下企业的销售和营销策略就可能会对您企业的销售业绩产生深远的影响,特别是当通过大数据分析之后进行的有规划的修改。
想象一下,一个为期六周的直邮营销活动票面收益率的超过了70%。而根据直销协会的介绍,平均直邮回报率仅为3.7%。而杂货连锁店Kroger公司是如何做到的呢?一方面,他们根据客户个人的购物历史记录采用个性化的直接邮寄方式。
Kroger公司的客户会员卡计划,被食品行业评为第一。超过90%的客户使用会员卡购买产品。虽然也有其他因素的共同作用,使得Kroger公司的财务绩效如此骄人,但其连续45个季度的持续增长至少部分要归因于其客户忠诚计划。
最大限度地减少设备和资产故障
企业希望避免不必要的业务中断干扰和客户的焦虑。现在,传感器已经被嵌入到一切设备,企业可以使用这些数据信息,以确定何时需要对飞机,火车,汽车,及其它电器设备进行维修。理想情况下,当问题已经出现的时候,企业要了解这个问题是什么原因造成的,以及其如何能得到解决,最好有一个专业的维修队伍。
Pratt &Whitney公司是美国联合技术公司(United Technologies Corp.)下属的一个单位,该公司试图减少意外的飞机发动机维修。据Airinsight.com介绍,今天的发动机能够在飞机飞行过程中从多个快照收集约100个参数。相比之下,新一代的引擎能够收集关于连续飞行的5000个参数。这一过程中产生约2千兆字节的数据。使用这些数据信息,Pratt &Whitney公司及其合作伙伴IBM得以进行主动的维修。
利用客户的终身价值
如今的授权客户比以往任何时候都更加苛刻和善变。企业为了保持或增加市场份额,需要尽可能多地了解自己的客户,不断改善自己的产品和服务,并愿意调整自己的商业模式,以反映其客户的实际需求。
美国汽车租赁公司AvisBudget就一直致力于这方面。他们通过实施整合战略增加了市场份额,并取得了数亿美元的额外收入。主动参与确定客户价值细分,提供分层激励,提高客户的忠诚度。该公司的IT合作伙伴CSC公司采用模型预测AvisBudget客户数据库的终身价值,并验证了其使用多通道的营销活动和相应的分析。
现在的客户评估数据结合了其他数据,包括客户的租赁历史,服务问题,服务地区的人口统计,企业隶属关系和客户反馈等等。Avis Budget也收集和分析社交媒体数据。该公司有一个社交媒体专家团队专门进行品牌营销。该公司最近还更新了网站,以进一步改善客户体验,并且他们正在使用大数据预测区域性的车队配售和定价服务需求。
以上是小编为大家分享的关于大数据利用的六大现实商业案例的相关内容,更多信息可以关注环球青藤分享更多干货
大数据应用的关键,也是其必要条件,就在于"IT"与"经营"的融合,当然,这里的经营的内涵可以非常广泛,小至一个零售门店的经营,大至一个城市的经营。以下是关于各行各业,不同的组织机构在大数据方面的应用的案例,在此申明,以下案例均来源于网络,本文仅作引用,并在此基础上作简单的梳理和分类。大数据应用案例之:医疗行业
Seton Healthcare是采用IBM最新沃森技术医疗保健内容分析预测的首个客户。该技术允许企业找到大量病人相关的临床医疗信息,通过大数据处理,更好地分析病人的信息。
在加拿大多伦多的一家医院,针对早产婴儿,每秒钟有超过3000次的数据读取。通过这些数据分析,医院能够提前知道哪些早产儿出现问题并且有针对性地采取措施,避免早产婴儿夭折。
它让更多的创业者更方便地开发产品,比如通过社交网络来收集数据的健康类App。也许未来数年后,它们搜集的数据能让医生给你的诊断变得更为精确,比方说不是通用的成人每日三次一次一片,而是检测到你的血液中药剂已经代谢完成会自动提醒你再次服药。
大数据应用案例之:能源行业
智能电网现在欧洲已经做到了终端,也就是所谓的智能电表。在德国,为了鼓励利用太阳能,会在家庭安装太阳能,除了卖电给你,当你的太阳能有多余电的时候还可以买回来。通过电网收集每隔五分钟或十分钟收集一次数据,收集来的这些数据可以用来预测客户的用电习惯等,从而推断出在未来2~3个月时间里,整个电网大概需要多少电。有了这个预测后,就可以向发电或者供电企业购买一定数量的电。因为电有点像期货一样,如果提前买就会比较便宜,买现货就比较贵。通过这个预测后,可以降低采购成本。
维斯塔斯风力系统,依靠的是BigInsights软件和IBM超级计算机,然后对气象数据进行分析,找出安装风力涡轮机和整个风电场最佳的地点。利用大数据,以往需要数周的分析工作,现在仅需要不足1小时便可完成。
大数据应用案例之:通信行业
XO Communications通过使用IBM SPSS预测分析软件,减少了将近一半的客户流失率。XO现在可以预测客户的行为,发现行为趋势,并找出存在缺陷的环节,从而帮助公司及时采取措施,保留客户。此外,IBM新的Netezza网络分析加速,将通过提供单个端到端网络、服务、客户分析视图的可扩展平台,帮助通信企业制定更科学、合理决策。
电信业者透过数以千万计的客户资料,能分析出多种使用者行为和趋势,卖给需要的企业,这是全新的资料经济。
中国移动通过大数据分析,对企业运营的全业务进行针对性的监控、预警、跟踪。系统在第一时间自动捕捉市场变化,再以最快捷的方式推送给指定负责人,使他在最短时间内获知市场行情。
NTT docomo把手机位置信息和互联网上的信息结合起来,为顾客提供附近的餐饮店信息,接近末班车时间时,提供末班车信息服务。
大数据应用案例之:零售业
"我们的某个客户,是一家领先的专业时装零售商,通过当地的百货商店、网络及其邮购目录业务为客户提供服务。公司希望向客户提供差异化服务,如何定位公司的差异化,他们通过从 Twitter 和 Facebook 上收集社交信息,更深入的理解化妆品的营销模式,随后他们认识到必须保留两类有价值的客户:高消费者和高影响者。希望通过接受免费化妆服务,让用户进行口碑宣传,这是交易数据与交互数据的完美结合,为业务挑战提供了解决方案。"Informatica的技术帮助这家零售商用社交平台上的数据充实了客户主数据,使他的业务服务更具有目标性。
零售企业也监控客户的店内走动情况以及与商品的互动。它们将这些数据与交易记录相结合来展开分析,从而在销售哪些商品、如何摆放货品以及何时调整售价上给出意见,此类方法已经帮助某领先零售企业减少了17%的存货,同时在保持市场份额的前提下,增加了高利润率自有品牌商品的比例。
欢迎分享,转载请注明来源:内存溢出
微信扫一扫
支付宝扫一扫
评论列表(0条)