关于粒子群算法的目标函数优化,优化函数如下图

关于粒子群算法的目标函数优化,优化函数如下图,第1张

function main()

clc;clear all;close all;

tic; %程序运行计时

E0=0001; %允许误差

MaxNum=100; %粒子最大迭代次数

narvs=1; %目标函数的自变量个数

particlesize=30; %粒子群规模

c1=2; %每个粒子的个体学习因子,也称为加速常数

c2=2; %每个粒子的社会学习因子,也称为加速常数

w=06; %惯性因子

vmax=08; %粒子的最大飞翔速度

x=-5+10rand(particlesize,narvs); %粒子所在的位置

v=2rand(particlesize,narvs); %粒子的飞翔速度

%用inline定义适应度函数以便将子函数文件与主程序文件放在一起,

%目标函数是:y=1+(21(1-x+2x^2)exp(-x^2/2))

%inline命令定义适应度函数如下:

fitness=inline('1/(1+(21(1-x+2x^2)exp(-x^2/2)))','x');

%inline定义的适应度函数会使程序运行速度大大降低

for i=1:particlesize

for j=1:narvs

f(i)=fitness(x(i,j));

end

end

personalbest_x=x;

随着分布式电源(distributed generation,DG)在配电网中安装比例逐年增加,配电自动化应加强对DG的优化调度功能,发挥DG对配电网优化的有利作用。配电网重构是配电网优化的重要措施,DG联网后,DG注入配电网功率直接影响配电网重构结果。为使配电网性能达到整体最优,提出了一种基于粒子群优化算法(particle swarm optimization,PSO)的配电网重构和DG注入功率综合优化算法。该算法根据PSO并行计算的特点,采用PSO和二进制粒子群优化算法(binary particle swarm optimization,BPSO)相结合的方式,对转换开关状态和DG注入功率2种控制变量同时处理,达到配电网网损、电压偏差最小的目的。将DG作为可调度设备,对配电网重构和DG注入功率进行综合优化,提高了含DG配电网的电能质量和供电可靠性。将该算法应用到3馈线配电系统,仿真结果验证了所提算法的有效性。

[r,c] = find(R == max(R(:))); 检索R中最大元素所在的位置(行标r和列标c)

thetap = theta(c(1)); theta()是自定义函数

给你一个地址,是Mathworks公司网站上的,全球Matlab使用者将自己的代码在这里分享,这是粒子群算法PSO工具箱地址

>

matlab最优化程序包括

无约束一维极值问题 进退法 黄金分割法 斐波那契法 牛顿法基本牛顿法 全局牛顿法 割线法 抛物线法 三次插值法 可接受搜索法 Goidstein法 WolfePowell法

单纯形搜索法 Powell法 最速下降法 共轭梯度法 牛顿法 修正牛顿法 拟牛顿法 信赖域法 显式最速下降法, Rosen梯度投影法 罚函数法 外点罚函数法

内点罚函数法 混合罚函数法 乘子法 G-N法 修正G-N法 L-M法 线性规划 单纯形法 修正单纯形法 大M法 变量有界单纯形法 整数规划 割平面法 分支定界法 0-1规划 二次规划

拉格朗曰法 起作用集算法 路径跟踪法 粒子群优化算法 基本粒子群算法 带压缩因子的粒子群算法 权重改进的粒子群算法 线性递减权重法 自适应权重法 随机权重法

变学习因子的粒子群算法 同步变化的学习因子 异步变化的学习因子 二阶粒子群算法 二阶振荡粒子群算法

以上就是关于关于粒子群算法的目标函数优化,优化函数如下图全部的内容,包括:关于粒子群算法的目标函数优化,优化函数如下图、求大神给一个分布式电源在配电网优化配置的matlab程序。、粒子群算法的matlab程序,一个线性规划问题的解决。主要是那个限制条件的处理。等相关内容解答,如果想了解更多相关内容,可以关注我们,你们的支持是我们更新的动力!

欢迎分享,转载请注明来源:内存溢出

原文地址:https://www.54852.com/zz/9311927.html

(0)
打赏 微信扫一扫微信扫一扫 支付宝扫一扫支付宝扫一扫
上一篇 2023-04-27
下一篇2023-04-27

发表评论

登录后才能评论

评论列表(0条)

    保存