
EX拔=EX,DX拔=DX/n
∵随机变量X服从二项分布X~B(n,p),且E(X)=3,D(X)=2,
∴E(X)=3=np,①
D(X)=2=np(1-p)②
①与②相除可得1-p= 23
∴p= 13 ,n=9
图形特点
对于固定的n以及p,当k增加时,概率P{X=k}先是随之增加直至达到最大值,随后单调减少。可以证明,一般的二项分布也具有这一性质,且:
当(n+1)p不为整数时,二项概率P{X=k}在k=[(n+1)p]时达到最大值;
当(n+1)p为整数时,二项概率P{X=k}在k=(n+1)p和k=(n+1)p-1时达到最大值。
连续型随机变量的概率密度函数(在不至于混淆时可以简称为密度函数)是一个描述这个随机变量的输出值,在某个确定的取值点附近的可能性的函数。
而随机变量的取值落在某个区域之内的概率则为概率密度函数在这个区域上的积分。当概率密度函数存在的时候,累积分布函数是概率密度函数的积分。概率密度函数一般以小写标记。
注意事项:
单纯的讲概率密度没有实际的意义,它必须有确定的有界区间为前提。可以把概率密度看成是纵坐标,区间看成是横坐标,概率密度对区间的积分就是面积,而这个面积就是事件在这个区间发生的概率,所有面积的和为1。
所以单独分析一个点的概率密度是没有任何意义的,它必须要有区间作为参考和对比。
欢迎分享,转载请注明来源:内存溢出
微信扫一扫
支付宝扫一扫
评论列表(0条)